Page 54 - Read Online
P. 54
Biersack. Cancer Drug Resist 2019;2:1-17 I http://dx.doi.org/10.20517/cdr.2019.09 Page 13
view of the corresponding miRNAs involved in alkylating drug response and resistance, and the co-drugs
for combination therapies with these alkylating agents should be selected accordingly. Prolonged survival
and improved quality of life would be possible and conceivable prospects for many cancer patients.
DECLARATIONS
Authors’ contributions
The author contributed solely to the article.
Availability of data and materials
Not applicable.
Financial support and sponsorship
None.
Conflicts of interest
The author declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2019.
REFERENCES
1. Smith SL. War! What is it good for? Mustard gas medicine. CMAJ 2017;189:E321-2.
2. Ralhan R, Kaur J. Alkylating agents and cancer therapy. Expert Opin Ther Patents 2007;17:1061-75.
3. Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, et al. Absorption, metabolism, and excretion of 14C-temozolomide following
oral administration to patients with advanced cancer. Clin Cancer Res 1999;5:309-17.
4. Bradner WT. Mitomycin C: a clinical update. Cancer Treat Rev 2001;27:35-50.
5. Ghosh N, Sheldrake HM, Searcey M, Pors K. Chemical and biological explorations of the family of CC-1065 and the duocarmycin
natural products. Curr Topics Med Chem 2009;9:1494-524.
6. Schobert R, Knauer S, Seibt S, Biersack B. Anticancer active illudins: recent developments of a potent alkylating compound class. Curr
Med Chem 2011;18:790-807.
7. Carter NJ, Keam SJ. Trabectedin: a review of its use in soft tissue sarcoma and ovarian cancer. Drugs 2010;70:355-76.
8. Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med 2008;40:197-208.
9. Bartels DB. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116: 281-98.
10. Wu S, Huang J, Ding Y, Zhao L, Liang L, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3’
untranslated region. Oncogene 2010;29:2302-8.
11. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857-66.
12. Mallick R, Patnaik SK, Yendumuri S. Micro RNAs and lung cancer: biology and prognosis in diagnosis and prognosis. J Carcinog
2010;9:8.
13. Rothe F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, et al. Global microRNA expression profiling identifies miR-210
associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One 2011;6:e20980.
14. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal
cells. Cell 2009;138:592-603.
15. Gregory PA, Bracken CP, Bert AG, Godall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 2008;7:3112-8.
16. Biersack B. Interactions between anticancer active platinum complexes and non-coding RNAs/microRNAs. Non-coding RNA Res
2017;2:1-17.
17. Su JL, Chen PS, Johansson G, Kuo ML. Function and regulation of let-7 microRNAs. MicroRNA 2012;1:34-9.
18. Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer. Biomed Rep 2016;5:395-402.