Page 127 - Read Online
P. 127
Ponnusamy et al. Cancer Drug Resist 2019;2:297-312 I http://dx.doi.org/10.20517/cdr.2018.11 Page 311
and tumor aggressiveness. Curr Drug Targets 2010;11:745-51.
41. Chen W, Qin Y, Liu S. Cytokines, breast cancer stem cells (BCSCs) and chemoresistance. Clin Transl Med 2018;7:27.
42. Suman S, Das TP, Damodaran C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer
cells. Br J Cancer 2013;109:2587-96.
43. Dong C, Wu Y, Yao J, Wang Y, Yu Y, et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human
breast cancer. J Clin Invest 2012;122:1469-86.
44. Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 2009;50:455-63.
45. Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 2009;1789:58-
68.
46. Nair SS, Kumar R. Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol 2012;6:611-9.
47. Dey P. Chromatin remodeling, cancer and chemotherapy. Curr Med Chem 2006;13:2909-19.
48. Chen D, Wu M, Li Y, Chang I, Yuan Q, et al. Targeting BMI1(+) cancer stem cells overcomes chemoresistance and inhibits metastases in
squamous cell carcinoma. Cell Stem Cell 2017;20:621-34 e6.
49. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing.
Science (New York, NY) 2002;298:1039-43.
50. Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. European journal of cancer (Oxford, England :
1990) 2005;41:2381-402.
51. Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res
2008;659:40-8.
52. Crea F, Danesi R, Farrar WL. Cancer stem cell epigenetics and chemoresistance. Epigenomics 2009;1(1):63-79.
53. Chekhun VF, Lukyanova NY, Kovalchuk O, Tryndyak VP, Pogribny IP. Epigenetic profiling of multidrug-resistant human MCF-7 breast
adenocarcinoma cells reveals novel hyper- and hypomethylated targets. Mol Cancer Ther 2007;6:1089-98.
54. Teodoridis JM, Strathdee G, Plumb JA, Brown R. CpG-island methylation and epigenetic control of resistance to chemotherapy. Biochem
Soc Trans 2004;32:916-7.
55. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, et al. Global levels of histone modifications predict prognosis in different cancers.
Am J Pathol 2009;174:1619-28.
56. Patra SK, Deb M, Patra A. Molecular marks for epigenetic identification of developmental and cancer stem cells. Clin Epigenetics
2011;2:27-53.
57. Poli V, Fagnocchi L, Zippo A. Tumorigenic cell reprogramming and cancer plasticity: interplay between signaling, microenvironment,
and epigenetics. Stem Cells Int 2018;2018:4598195.
58. Menendez JA, Corominas-Faja B, Cuyas E, Garcia MG, Fernandez-Arroyo S, et al. Oncometabolic nuclear reprogramming of cancer
stemness. Stem Cell Reports 2016;6:273-83.
59. Aubele M, Schmitt M, Napieralski R, Paepke S, Ettl J, et al. The predictive value of PITX2 DNA methylation for high-risk breast cancer
therapy: current guidelines, medical needs, and challenges. Dis Markers 2017;2017:4934608.
60. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5’ CpG
islands increases with malignant progression in human breast cancer. Cancer Res 2000;60:4346-8.
61. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2:48-58.
62. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal
transition. Nat Struct Mol Biol 2011;18:867-74.
63. Ke XS, Qu Y, Cheng Y, Li WC, Rotter V, et al. Global profiling of histone and DNA methylation reveals epigenetic-based regulation of
gene expression during epithelial to mesenchymal transition in prostate cells. BMC Genomics 2010;11:669.
64. Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, et al. E-cadherin transcriptional downregulation by promoter
methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 2006;94:661-71.
65. Xiao XS, Cai MY, Chen JW, Guan XY, Kung HF, et al. High expression of p300 in human breast cancer correlates with tumor recurrence
and predicts adverse prognosis. Chin J Cancer Res 2011;23:201-7.
66. Liao ZW, Zhao L, Cai MY, Xi M, He LR, et al. P300 promotes migration, invasion and epithelial-mesenchymal transition in a
nasopharyngeal carcinoma cell line. Oncol Lett 2017;13:763-9.
67. Li QQ, Xu JD, Wang WJ, Cao XX, Chen Q, et al. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to
multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res 2009;15:2657-65.
68. Zhang X, Zhang Z, Zhang Q, Zhang Q, Sun P, et al. ZEB1 confers chemotherapeutic resistance to breast cancer by activating ATM. Cell
Death Dis 2018;9:57.
69. Fu J, Qin L, He T, Qin J, Hong J, et al. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res
2011;21:275-89.
70. Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, et al. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters
its activities. Mol Cell Biol 2011;31:4720-34.
71. Pourakbar S, Pluard TJ, Accurso AD, Farassati F. Ezh2, a novel target in detection and therapy of breast cancer. Onco Targets Ther
2017;10:2685-7.
72. Lee JY, Park MK, Park JH, Lee HJ, Shin DH, et al. Loss of the polycomb protein Mel-18 enhances the epithelial-mesenchymal transition
by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer. Oncogene 2014;33:1325-35.
73. Yang F, Sun L, Li Q, Han X, Lei L, et al. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional