Page 126 - Read Online
P. 126
Page 310 Ponnusamy et al. Cancer Drug Resist 2019;2:297-312 I http://dx.doi.org/10.20517/cdr.2018.11
cellular plasticity. Trends Genet 2017;33:943-59.
8. Nickel A, Stadler SC. Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells. Transl Res
2015;165:126-42.
9. Lee JY, Kong G. Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and
progression. Cell Mol Life Sci 2016;73:4643-60.
10. Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational
modifications. Mol Cancer 2016;15:18.
11. Ravasio R, Ceccacci E, Minucci S. Self-renewal of tumor cells: epigenetic determinants of the cancer stem cell phenotype. Curr Opin
Genet Dev 2016;36:92-9.
12. He DX, Gu F, Gao F, Hao JJ, Gong D, et al. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant
breast cancer. Sci Rep 2016;6:24706.
13. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol
2017;14:611-29.
14. Liu X, Fan D. The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links. Curr Pharm Des
2015;21:1279-91.
15. Sin WC, Lim CL. Breast cancer stem cells-from origins to targeted therapy. Stem Cell Investig 2017;4:96.
16. Liu S, Cong Y, Wang D, Sun Y, Deng L, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of
their normal counterparts. Stem Cell Reports 2014;2:78-91.
17. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity
and enhances tumorigenicity. Cell 2013;154:61-74.
18. Nishi M, Sakai Y, Akutsu H, Nagashima Y, Quinn G, et al. Induction of cells with cancer stem cell properties from nontumorigenic human
mammary epithelial cells by defined reprogramming factors. Oncogene 2014;33:643-52.
19. Liao WT, Ye YP, Deng YJ, Bian XW, Ding YQ. Metastatic cancer stem cells: from the concept to therapeutics. Am J Stem Cells
2014;3:46-62.
20. Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, et al. Prolonged drug selection of breast cancer cells and enrichment of cancer
stem cell characteristics. J Natl Cancer Inst 2010;102:1637-52.
21. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer
treatment. Stem Cells Int 2018;2018:5416923.
22. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell
subpopulations. Cell 2010;141:69-80.
23. Wilting RH, Dannenberg JH. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat
2012;15:21-38.
24. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, et al. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel
the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 2010;15:235-52.
25. Yenigun VB, Ozpolat B, Kose GT. Response of CD44+/CD24-/low breast cancer stem/progenitor cells to tamoxifen and
doxorubicininduced autophagy. Int J Mol Med 2013;31:1477-83.
26. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, et al. The epithelial-mesenchymal transition generates cells with properties of stem
cells. Cell 2008;133:704-15.
27. Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of
the mTOR pathway. J Cell Biol 2007;178:437-51.
28. Sakaki-Yumoto M, Katsuno Y, Derynck R. TGF-beta family signaling in stem cells. Biochim Biophys Acta 2013;1830:2280-96.
29. Vervoort SJ, Lourenco AR, van Boxtel R, Coffer PJ. SOX4 mediates TGF-beta-induced expression of mesenchymal markers during
mammary cell epithelial to mesenchymal transition. PLoS One 2013;8:e53238.
30. Lee JJ, Loh K, Yap YS. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med 2015;12:342-54.
31. Dhasarathy A, Kajita M, Wade PA. The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen
receptor-alpha. Mol Endocrinol 2007;21:2907-18.
32. Jang GB, Kim JY, Cho SD, Park KS, Jung JY, et al. Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by
inhibiting CSC-like phenotype. Sci Rep 2015;5:12465.
33. Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010;16:3153-62.
34. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017;36:1461-73.
35. Li J, Zhou BP. Activation of beta-catenin and Akt pathways by twist are critical for the maintenance of EMT associated cancer stem cell-
like characters. BMC Cancer 2011;11:49.
36. Deshmukh A, Kumar S, Arfuso F, Newsholme P, Dharmarajan A. Secreted Frizzled-related protein 4 (sFRP4) chemo-sensitizes cancer
stem cells derived from human breast, prostate, and ovary tumor cell lines. Sci Rep 2017;7:2256.
37. Ponnusamy L, Mahalingaiah PKS, Singh KP. Treatment schedule and estrogen receptor-status influence acquisition of doxorubicin
resistance in breast cancer cells. Eur J Pharm Sci 2017;104:424-33.
38. Katoh Y, Katoh M. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol
Med 2009;9:873-86.
39. Wils LJ, Bijlsma MF. Epigenetic regulation of the hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018;121:23-44.
40. Wang Z, Li Y, Kong D, Sarkar FH. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development