Page 161 - Read Online
P. 161
Page 176 Kumar et al. Cancer Drug Resist 2019;2:161-77 I http://dx.doi.org/10.20517/cdr.2018.27
105. Hui RC, Gomes AR, Constantinidou D, Costa JR, Karadedou CT, et al. The forkhead transcription factor FOXO3a increases
phosphoinositide-3 kinase/ Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol Cell Biol
2008;28:5886-98.
106. Saba R, Alsayed A, Zacny JP, Dudek AZ. The role of forkhead box protein m1 in breast cancer progression and resistance to therapy.
Int J Breast Cancer 2016;2016:1-8.
107. Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair
genes. Mol Cell Biol 2007;27:1007-16.
108. Park YY, Jung SY, Jennings NB, Rodriguez-Aguayo C, Peng G, et al. FOXM1 mediates Dox resistance in breast cancer by enhancing
DNA repair. Carcinogenesis 2012;33:1843-53.
109. Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, et al. The Forkhead Box M1 protein regulates BRIP1 expression and
DNA damage repair in epirubicin treatment. Oncogene 2013;32:4634-45.
110. M Golubovskaya V. Focal adhesion kinase as a cancer therapy target. Anticancer Agents Med Chem 2010;10:735-41.
111. van Nimwegen MJ, van de Water B. Focal adhesion kinase: a potential target in cancer therapy. Biochem pharmacol 2007;73:597-609.
112. Ren XD, Kiosses WB, Sieg DJ, Otey CA, Schlaepfer DD, et al. Focal adhesion kinase suppresses Rho activity to promote focal
adhesion turnover. J Cell Sci 2000;113:3673-8.
113. Roy-Luzarraga M, Hodivala-Dilke K. Molecular pathways: Endothelial cell FAK-a target for cancer treatment. Clin Cancer Res
2016;22:3718-24.
114. Gilbert LA, Hemann MT. DNA damage-mediated induction of a chemoresistant niche. Cell 2010;143:355-66.
115. Lokman NA, Ween MP, Oehler MK, Ricciardelli C. The role of annexin A2 in tumorigenesis and cancer progression. Cancer
Microenviron 2011;4:199-208.
116. Grindheim AK, Saraste J, Vedeler A. Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys
Acta Gen Subj 2017;1861:2515-29.
117. Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development. Oncol rep 2015;33:2121-8.
118. Spijkers-Hagelstein JA, Pinhancos SM, Schneider P, Pieters R, Stam RW. Src kinase-induced phosphorylation of annexin A2 mediates
glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 2013;27:1063-71.
119. Chen CY, Lin YS, Chen CH, Chen YJ. Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal
carcinoma. J Biomed Sci 2018;25:1-10.
120. Liu X, Wei L, Zhao B, Cai X, Dong C, et al. Low expression of KCNN3 may affect drug resistance in ovarian cancer. Mol Med Rep
2018;18:1377-86.
121. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, et al. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is
involved in store-operated calcium influx Evidence for similarities in store-operated and calcium release-activated calcium channel
components. J Biol Chem 2007;282:9105-16.
122. Dasgupta S, Wasson LM, Rauniyar N, Prokai L, Borejdo J, et al. Novel gene C17orf37 in 17q12 amplicon promotes migration and
invasion of prostate cancer cells. Oncogene 2009;28:2860-72.
123. Rajendiran S, Parwani AV, Hare RJ, Dasgupta S, Roby RK, et al. MicroRNA-940 suppresses prostate cancer migration and invasion by
regulating MIEN1. Mol cancer 2014;13:1-15.
124. Leung TH, Wong SC, Chan KK, Chan DW, Cheung AN, et al. The interaction between C35 and ΔNp73 promotes chemo-resistance in
ovarian cancer cells. Br J Cancer 2013;109:965-75.
125. Wang Y, Chen K, Cai Y, Cai Y, Yuan X, et al. Annexin A2 could enhance multidrug resistance by regulating NF-κB signaling pathway
in pediatric neuroblastoma. J Exp Clin Cancer Res 2017;36:1-16.
126. Liu S, Yin F, Zhao M, Zhou C, Ren J, et al. The homing and inhibiting effects of hNSCs-BMP4 on human glioma stem cells.
Oncotarget. 2016;7:17920-31.
127. Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: the proteins that form the glue. Oncotarget. 2017;8:48471-87.
128. Annunziata CM, Kohn EC. Novel facts about FAK: new connections to drug resistance? J Natl Cancer Inst 2013;105:1430-1.
129. Barreiro-Alonso A, Lamas-Maceiras M, García-Díaz R, Rodríguez-Belmonte E, Yu L, et al. Delineating the HMGB1 and HMGB2
interactome in prostate and ovary epithelial cells and its relationship with cancer. Oncotarget. 2018;9:19050-64.
130. Syed N, Chavan S, Sahasrabuddhe NA, Renuse S, Sathe G, et al. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin
and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma. Proteomics 2015;15:383-93.
131. Ukmar G, Melloni GE, Raddrizzani L, Rossi P, Di Bella S, et al. PATRI, a Genomics Data Integration Tool for Biomarker Discovery.
BioMed Res Int 2018;2018:1-13.
132. Katz E, Dubois-Marshall S, Sims AH, Faratian D, Li J, et al. A gene on the HER2 amplicon, C35, is an oncogene in breast cancer
whose actions are prevented by inhibition of Syk. Br J Cancer 2010;103:401-10.
133. Futerman AH, Hannun YA. The complex life of simple sphingolipids. EMBO Rep 2004;5:777-82.
134. Saddoughi SA, Song P, Ogretmen B. Roles of bioactive sphingolipids in cancer biology and therapeutics. In Lipids in Health and
Disease. Dordrecht: Springer; 2008. pp. 413-40.
135. Hinrichs JW, Klappe K, Kok JW. Rafts as missing link between multidrug resistance and sphingolipid metabolism. J Membr Biol
2005;203:57-64.
136. Gouaze-Andersson V, Cabot MC. Glycosphingolipids and drug resistance. Biochim Biophys Acta 2006;1758:2096-103.
137. Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, et al. Glucosylceramide synthase blockade down-regulates P-glycoprotein and
resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 2005;65:3861-7.