Page 62 - Read Online
P. 62
Page 24 of 25 Han et al. Cancer Drug Resist 2024;7:16 https://dx.doi.org/10.20517/cdr.2024.01
10. Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018;36:506-20. DOI PubMed
11. Li Y, Li Y, Yao Y, et al. Potential of cucurbitacin as an anticancer drug. Biomed Pharmacother 2023;168:115707. DOI
12. Dai S, Wang C, Zhao X, et al. Cucurbitacin B: a review of its pharmacology, toxicity, and pharmacokinetics. Pharmacol Res
2023;187:106587. DOI
13. Yuan R, Zhao W, Wang QQ, et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/
GSDMD-dependent pyroptosis. Pharmacol Res 2021;170:105748. DOI
14. Liu JH, Li C, Cao L, Zhang CH, Zhang ZH. Cucurbitacin B regulates lung cancer cell proliferation and apoptosis via inhibiting the IL-
6/STAT3 pathway through the lncRNA XIST/miR-let-7c axis. Pharm Biol 2022;60:154-62. DOI PubMed PMC
15. Zhang H, Zhao B, Wei H, Zeng H, Sheng D, Zhang Y. Cucurbitacin B controls M2 macrophage polarization to suppresses metastasis
via targeting JAK-2/STAT3 signalling pathway in colorectal cancer. J Ethnopharmacol 2022;287:114915. DOI PubMed
16. Dandawate P, Subramaniam D, Panovich P, et al. Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling
pathway. Sci Rep 2020;10:1290. DOI PubMed PMC
17. Yin D, Wakimoto N, Xing H, et al. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma
multiforme. Int J Cancer 2008;123:1364-75. DOI
18. Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt HHHW. Network pharmacology: curing causal mechanisms instead of
treating symptoms. Trends Pharmacol Sci 2022;43:136-50. DOI PubMed
19. Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 2019;20:4331. DOI PubMed PMC
20. Ren L, Zheng X, Liu J, et al. Network pharmacology study of traditional Chinese medicines for stroke treatment and effective
constituents screening. J Ethnopharmacol 2019;242:112044. DOI
21. He B, Zhao Z, Cai Q, et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020;16:2628-47. DOI
PubMed PMC
22. WMA. WMA Declaration of Helsinki - Ethical principles for medical research involving human subjects. Available from: https://
www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. [Last
accessed on 26 Apr 2024].
23. Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS
Biol 2020;18:e3000410. DOI
24. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat
Commun 2019;10:1523. DOI PubMed PMC
25. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes
in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 2016;31:177-83. DOI PubMed
26. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev
Cancer 2009;9:265-73. DOI PubMed
27. Zheng Z, Zhang L, Hou X. Potential roles and molecular mechanisms of phytochemicals against cancer. Food Funct 2022;13:9208-25.
DOI
28. Yuan Z, Pan Y, Leng T, et al. Progress and prospects of research ideas and methods in the network pharmacology of traditional
Chinese medicine. J Pharm Pharm Sci 2022;25:218-26. DOI
29. Zhou J, Xu N, Liu B, et al. lncRNA XLOC013218 promotes cell proliferation and TMZ resistance by targeting the PIK3R2-mediated
PI3K/AKT pathway in glioma. Cancer Sci 2022;113:2681-92. DOI PubMed PMC
30. An J, Fan H, Han M, Peng C, Xie J, Peng F. Exploring the mechanisms of neurotoxicity caused by fuzi using network pharmacology
and molecular docking. Front Pharmacol 2022;13:961012. DOI PubMed PMC
31. Reinhardt A, Stichel D, Schrimpf D, et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype
glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol 2018;136:273-91. DOI
32. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat
Rev Cancer 2014;14:736-46. DOI
33. Piperi C, Papavassiliou KA, Papavassiliou AG. Pivotal role of STAT3 in shaping glioblastoma immune microenvironment. Cells
2019;8:1398. DOI PubMed PMC
34. Venkata NG, Robinson JA, Cabot PJ, Davis B, Monteith GR, Roberts-Thomson SJ. Mono(2-ethylhexyl)phthalate and mono-n-butyl
phthalate activation of peroxisome proliferator activated-receptors alpha and gamma in breast. Toxicol Lett 2006;163:224-34. DOI
PubMed
35. Leng J, Li H, Niu Y, et al. Low-dose mono(2-ethylhexyl) phthalate promotes ovarian cancer development through PPARα-dependent
PI3K/Akt/NF-κB pathway. Sci Total Environ 2021;790:147990. DOI
36. Zhang R, Li H, Zhang S, et al. RXRα provokes tumor suppression through p53/p21/p16 and PI3K-AKT signaling pathways during
stem cell differentiation and in cancer cells. Cell Death Dis 2018;9:532. DOI PubMed PMC
37. Gagliardi PA, Puliafito A, Primo L. PDK1: at the crossroad of cancer signaling pathways. Semin Cancer Biol 2018;48:27-35. DOI
PubMed
38. Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat
Rev 2004;30:193-204. DOI PubMed
39. Tang J, Yao C, Liu Y, et al. Arsenic trioxide induces expression of BCL-2 expression via NF-κB and p38 MAPK signaling pathways
in BEAS-2B cells during apoptosis. Ecotoxicol Environ Saf 2021;222:112531. DOI