Page 56 - Read Online
P. 56

Sendino et al. Cancer Drug Resist 2018;1:139-63 I http://dx.doi.org/10.20517/cdr.2018.09                                                        Page 155

                   60.
               3.   Stade K, Ford CS, Guthrie C, Weis K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 1997;90:1041-50.
               4.   Ossareh-Nazari B, Bachelerie F, Dargemont C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science
                   1997;278:141-4.
               5.   Hutten S, Kehlenbach RH. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 2007;17:193-201.
               6.   Okamura M, Inose H, Masuda S. RNA export through the NPC in Eukaryotes. Genes (Basel) 2015;6:124-49.
               7.   Turner JG, Sullivan DM. CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr Med Chem 2008;15:2648-55.
               8.   Arnaoutov A, Azuma Y, Ribbeck K, Joseph J, Boyarchuk Y, Karpova T, McNally J, Dasso M. Crm1 is a mitotic effector of Ran-GTP in
                   somatic cells. Nat Cell Biol 2005;7:626-32.
               9.   Gravina GL, Senapedis W, McCauley D, Baloglu E, Shacham S, Festuccia C. Nucleo-cytoplasmic transport as a therapeutic target of
                   cancer. J Hematol Oncol 2014;7:85.
               10.  Tan DS, Bedard PL, Kuruvilla J, Siu LL, Razak AR. Promising SINEs for embargoing nuclear-cytoplasmic export as an anticancer
                   strategy. Cancer Discov 2014;4:527-37.
               11.  Koyama M, Matsuura Y. Mechanistic insights from the recent structures of the CRM1 nuclear export complex and its disassembly inter-
                   mediate. Biophysics (Nagoya-shi) 2012;8:145-50.
               12.  Fung HY, Chook YM. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 2014;27:52-61.
               13.  Monecke T, Dickmanns A, Ficner R. Allosteric control of the exportin CRM1 unraveled by crystal structure analysis. FEBS J
                   2014;281:4179-94.
               14.  Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, Ataman B, Koon A, Chang YT, Li Q, Moore MJ, Budnik V. Nuclear envelope
                   budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 2012;149:832-46.
               15.  Knockenhauer KE, Schwartz TU. The nuclear pore complex as a flexible and dynamic gate. Cell 2016;164:1162-71.
               16.  Schmidt HB, Görlich D. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem Sci
                   2016;41:46-61.
               17.  Pemberton LF, Paschal BM. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 2005;6:187-98.
               18.  Tran EJ, King MC, Corbett AH. Macromolecular transport between the nucleus and the cytoplasm: advances in mechanism and emerg-
                   ing links to disease. Biochim Biophys Acta 2014;1843:2784-95.
               19.  Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J 2015;282:445-62.
               20.  Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ, Russel D, Wente SR, Sali A, Rout MP. Simple rules for passive diffusion
                   through the nuclear pore complex. J Cell Biol 2016;215:57-76.
               21.  Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 2017;18:73-
                   89.
               22.  Çağatay T, Chook YM. Karyopherins in cancer. Curr Opin Cell Biol 2018;52:30-42.
               23.  Soniat M, Chook YM. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem J 2015;468:353-62.
               24.  Gama-Carvalho M, Carmo-Fonseca M. The rules and roles of nucleocytoplasmic shuttling proteins. FEBS Lett 2001;498:157-63.
               25.  Nachury MV, Weis K. The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 1999;96:9622-7.
               26.  Nardozzi JD, Lott K, Cingolani G. Phosphorylation meets nuclear import: a review. Cell Commun Signal 2010;8:32.
               27.  Panayiotou R, Miralles F, Pawlowski R, Diring J, Flynn HR, Skehel M, Treisman R. Phosphorylation acts positively and negatively to
                   regulate MRTF-A subcellular localisation and activity. Elife 2016;5:e15460.
               28.  Rodríguez JA. Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins. Se-
                   min Cancer Biol 2014;27:11-9.
               29.  Rodriguez JA, Schüchner S, Au WW, Fabbro M, Henderson BR. Nuclear-cytoplasmic shuttling of BARD1 contributes to its proapop-
                   totic activity and is regulated by dimerization with BRCA1. Oncogene 2004;23:1809-20.
               30.  Engelsma D, Rodriguez JA, Fish A, Giaccone G, Fornerod M. Homodimerization antagonizes nuclear export of survivin. Traffic
                   2007;8:1495-502.
               31.  Ding Q, Zhao L, Guo H, Zheng AC. The nucleocytoplasmic transport of viral proteins. Virol Sin 2010;25:79-85.
               32.  García-Santisteban I, Arregi I, Alonso-Mariño M, Urbaneja MA, Garcia-Vallejo JJ, Bañuelos S, Rodríguez JA. A cellular reporter to
                   evaluate CRM1 nuclear export activity: functional analysis of the cancer-related mutant E571K. Cell Mol Life Sci 2016;73:4685-99.
               33.  Xu D, Farmer A, Collett G, Grishin NV, Chook YM. Sequence and structural analyses of nuclear export signals in the NESdb database.
                   Mol Biol Cell 2012;23:3677-93.
               34.  Kirli K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D. A deep proteomics perspective on CRM1-mediated
                   nuclear export and nucleocytoplasmic partitioning. Elife 2015;4:e11466.
               35.  Hirayama S, Sugihara M, Morito D, Iemura SI, Natsume T, Murata S, Nagata K. Nuclear export of ubiquitinated proteins via the UBIN-
                   POST system. Proc Natl Acad Sci U S A 2018;115:E4199-208.
               36.  Wu T, Chen W, Zhong Y, Hou X, Fang S, Liu CY, Wang G, Yu T, Huang YY, Ouyang X, Li HQ, Cui L, Yang Y. Nuclear export of ubiq-
                   uitinated proteins determines the sensitivity of colorectal cancer to proteasome inhibitor. Mol Cancer Ther 2017;16:717-28.
               37.  Englmeier L, Fornerod M, Bischoff FR, Petosa C, Mattaj IW, Kutay U. RanBP3 influences interactions between CRM1 and its nuclear
                   protein export substrates. EMBO Rep 2001;2:926-32.
               38.  Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG. Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein
                   export. J Cell Biol 2001;153:1391-402.
               39.  Koyama M, Shirai N, Matsuura Y. Structural insights into how Yrb2p accelerates the assembly of the Xpo1p nuclear export complex.
   51   52   53   54   55   56   57   58   59   60   61