Page 57 - Read Online
P. 57
Page 156 Sendino et al. Cancer Drug Resist 2018;1:139-63 I http://dx.doi.org/10.20517/cdr.2018.09
Cell Rep 2014;9:983-95.
40. Kosugi S, Hasebe M, Tomita M, Yanagawa H. Nuclear export signal consensus sequences defined using a localization-based yeast se-
lection system. Traffic 2008;9:2053-62.
41. Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Görlich D. NES consensus redefined by struc-
tures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 2010;17:1367-76.
42. Henderson BR, Eleftheriou A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export sig-
nals. Exp Cell Res 2000;256:213-24.
43. Fu SC, Huang HC, Horton P, Juan HF. ValidNESs: a database of validated leucine-rich nuclear export signals. Nucleic Acids Res
2013;41:D338-43.
44. Fung HY, Fu SC, Chook YM. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. Elife
2017;6:e23961.
45. Neggers JE, Vercruysse T, Jacquemyn M, Vanstreels E, Baloglu E, Shacham S, Crochiere M, Landesman Y, Daelemans D. Identifying
drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem Biol 2015;22:107-16.
46. Williams T, Ngo LH, Wickramasinghe VO. Nuclear export of RNA: different sizes, shapes and functions. Semin Cell Dev Biol
2018;75:70-7.
47. Thomson E, Ferreira-Cerca S, Hurt E. Eukaryotic ribosome biogenesis at a glance. J Cell Sci 2013;126:4815-21.
48. Delaleau M, Borden KL. Multiple export mechanisms for mRNAs. Cells 2015;4:452-73.
49. Yang J, Bogerd HP, Wang PJ, Page DC, Cullen BR. Two closely related human nuclear export factors utilize entirely distinct export
pathways. Mol Cell 2001;8:397-406.
50. Brennan CM, Gallouzi IE, Steitz JA. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol
2000;151:1-14.
51. Topisirovic I, Siddiqui N, Lapointe VL, Trost M, Thibault P, Bangeranye C, Piñol-Roma S, Borden KL. Molecular dissection of the eu-
karyotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J 2009;28:1087-98.
52. Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phos-
phorylation. Cell 2000;101:187-98.
53. Xie M, Li M, Vilborg A, Lee N, Shu MD, Yartseva V, Šestan N, Steitz JA. Mammalian 5’-capped microRNA precursors that generate a
single microRNA. Cell 2013;155:1568-80.
54. Noh JH, Kim KM, Abdelmohsen K, Yoon JH, Panda AC, Munk R, Kim J, Curtis J, Moad CA, Wohler CM, Indig FE, de Paula W,
Dudekula DB, De S, Piao Y, Yang X, Martindale JL, de Cabo R, Gorospe M. HuR and GRSF1 modulate the nuclear export and mito-
chondrial localization of the lncRNA RMRP. Genes Dev 2016;30:1224-39.
55. Martinez I, Hayes KE, Barr JA, Harold AD, Xie M, Bukhari SIA, Vasudevan S, Steitz JA, DiMaio D. An Exportin-1-dependent mi-
croRNA biogenesis pathway during human cell quiescence. Proc Natl Acad Sci U S A 2017;114:E4961-70.
56. Sheng P, Fields C, Aadland K, Wei T, Kolaczkowski O, Gu T, Kolaczkowski B, Xie M. Dicer cleaves 5’-extended microRNA precursors
originating from RNA polymerase II transcription start sites. Nucleic Acids Res 2018;46:5737-52.
57. Castanotto D, Lingeman R, Riggs AD, Rossi JJ. CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad
Sci U S A 2009;106:21655-9.
58. Pradet-Balade B, Girard C, Boulon S, Paul C, Azzag K, Bordonné R, Bertrand E, Verheggen C. CRM1 controls the composition of nu-
cleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO J 2011;30:2205-18.
59. Forbes DJ, Travesa A, Nord MS, Bernis C. Reprint of “Nuclear transport factors: global regulation of mitosis”. Curr Opin Cell Biol
2015;34:122-34.
60. Liu Q, Jiang Q, Zhang C. A fraction of Crm1 locates at centrosomes by its CRIME domain and regulates the centrosomal localization of
pericentrin. Biochem Biophys Res Commun 2009;384:383-8.
61. Wu Z, Jiang Q, Clarke PR, Zhang C. Phosphorylation of Crm1 by CDK1-cyclin-B promotes Ran-dependent mitotic spindle assembly. J
Cell Sci 2013;126:3417-28.
62. Gilistro E, de Turris V, Damizia M, Verrico A, Moroni S, De Santis R, Rosa A, Lavia P. Importin-β and CRM1 control a RANBP2 spa-
tiotemporal switch essential for mitotic kinetochore function. J Cell Sci 2017;130:2564-78.
63. Wang X, Li S. Protein mislocalization: mechanisms, functions and clinical applications in cancer. Biochim Biophys Acta 2014;1846:13-
25.
64. Dickmanns A, Monecke T, Ficner R. Structural basis of targeting the exportin CRM1 in cancer. Cells 2015;4:538-68.
65. Hung MC, Link W. Protein localization in disease and therapy. J Cell Sci 2011;124:3381-92.
66. Hill R, Cautain B, de Pedro N, Link W. Targeting nucleocytoplasmic transport in cancer therapy. Oncotarget 2014;5:11-28.
67. Jeyasekharan AD, Liu Y, Hattori H, Pisupati V, Jonsdottir AB, Rajendra E, Lee M, Sundaramoorthy E, Schlachter S, Kaminski CF, Ofir-
Rosenfeld Y, Sato K, Savill J, Ayoub N, Venkitaraman AR. A cancer-associated BRCA2 mutation reveals masked nuclear export signals
controlling localization. Nat Struct Mol Biol 2013;20:1191-8.
68. Pauty J, Couturier AM, Rodrigue A, Caron MC, Coulombe Y, Dellaire G, Masson JY. Cancer-causing mutations in the tumor sup-
pressor PALB2 reveal a novel cancer mechanism using a hidden nuclear export signal in the WD40 repeat motif. Nucleic Acids Res
2017;45:2644-57.
69. Mariano AR, Colombo E, Luzi L, Martinelli P, Volorio S, Bernard L, Meani N, Bergomas R, Alcalay M, Pelicci PG. Cytoplasmic local-
ization of NPM in myeloid leukemias is dictated by gain-of-function mutations that create a functional nuclear export signal. Oncogene
2006;25:4376-80.