Page 90 - Read Online
P. 90

Sharma et al. Cancer Drug Resist 2023;6:688-708  https://dx.doi.org/10.20517/cdr.2023.82                                        Page 706

               126.      Sesé B, Íñiguez-Muñoz S, Ensenyat-Mendez M, et al. Glioblastoma embryonic-like stem cells exhibit immune-evasive phenotype.
                    Cancer 2022;14:2070.  DOI  PubMed  PMC
               127.      Gaynor N, Crown J, Collins DM. Immune checkpoint inhibitors: key trials and an emerging role in breast cancer. Semin Cancer Biol
                    2022;79:44-57.  DOI
               128.      De Felice F, Marchetti C, Palaia I, et al. Immune check-point in cervical cancer. Crit Rev Oncol Hematol 2018;129:40-3.  DOI
               129.      Zhao X, Pan X, Wang Y, Zhang Y. Targeting neoantigens for cancer immunotherapy. Biomark Res 2021;9:61.  DOI  PubMed  PMC
               130.      Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:69-74.  DOI  PubMed
               131.      Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer
                    therapy. Nat Rev Cancer 2016;16:275-87.  DOI  PubMed  PMC
               132.      Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature 2013;500:415-21.  DOI
                    PubMed  PMC
               133.      Watowich MB, Gilbert MR, Larion M. T cell exhaustion in malignant gliomas. Trends Cancer 2023;9:270-92.  DOI  PubMed  PMC
               134.      Yue Q, Zhang X, Ye HX, et al. The prognostic value of Foxp3+ tumor-infiltrating lymphocytes in patients with glioblastoma. J
                    Neurooncol 2014;116:251-9.  DOI  PubMed  PMC
               135.      Tomaszewski WH, Waibl-Polania J, Chakraborty M, et al. Neuronal CaMKK2 promotes immunosuppression and checkpoint
                    blockade resistance in glioblastoma. Nat Commun 2022;13:6483.  DOI  PubMed  PMC
               136.      Mieczkowski J, Kocyk M, Nauman P, et al. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is
                    associated with defective inflammatory/immune gene responses in glioblastoma. Oncotarget 2015;6:33077-90.  DOI  PubMed  PMC
               137.      Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B. Impaired capacity for upregulation of MHC class II in
                    tumor-associated microglia. Glia 2005;51:279-85.  DOI  PubMed
               138.      Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in
                    mediating antitumor immune responses. Neuro Oncol 2006;8:261-79.  DOI  PubMed  PMC
               139.      Beauvillain C, Donnou S, Jarry U, et al. Neonatal and adult microglia cross-present exogenous antigens. Glia 2008;56:69-77.  DOI
               140.      Jarry U, Jeannin P, Pineau L, Donnou S, Delneste Y, Couez D. Efficiently stimulated adult microglia cross-prime naive CD8+ T cells
                    injected in the brain. Eur J Immunol 2013;43:1173-84.  DOI  PubMed
               141.      Lee AH, Sun L, Mochizuki AY, et al. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the
                    immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat Commun 2021;12:6938.  DOI
               142.      Chen AX, Gartrell RD, Zhao J, et al. Single-cell characterization of macrophages in glioblastoma reveals MARCO as a mesenchymal
                    pro-tumor marker. Genome Med 2021;13:88.  DOI  PubMed  PMC
               143.      Park JH, Kang I, Lee HK. The immune landscape of high-grade brain tumor after treatment with immune checkpoint blockade. Front
                    Immunol 2022;13:1044544.  DOI  PubMed  PMC
               144.      Simonds EF, Lu ED, Badillo O, et al. Deep immune profiling reveals targetable mechanisms of immune evasion in immune
                    checkpoint inhibitor-refractory glioblastoma. J Immunother Cancer 2021;9:e002181.  DOI  PubMed  PMC
               145.      Iorgulescu JB, Gokhale PC, Speranza MC, et al. Concurrent dexamethasone limits the clinical benefit of immune checkpoint
                    blockade in glioblastoma. Clin Cancer Res 2021;27:276-87.  DOI  PubMed  PMC
               146.      Shields LB, Shelton BJ, Shearer AJ, et al. Dexamethasone administration during definitive radiation and temozolomide renders a
                    poor prognosis in a retrospective analysis of newly diagnosed glioblastoma patients. Radiat Oncol 2015;10:222.  DOI  PubMed  PMC
               147.      Ueda S, Mineta T, Nakahara Y, Okamoto H, Shiraishi T, Tabuchi K. Induction of the DNA repair gene O6-methylguanine-DNA
                    methyltransferase by dexamethasone in glioblastomas. J Neurosurg 2004;101:659-63.  DOI  PubMed
                                                                               6
               148.      Aasland D, Reich TR, Tomicic MT, Switzeny OJ, Kaina B, Christmann M. Repair gene O  -methylguanine-DNA methyltransferase
                    is controlled by SP1 and up-regulated by glucocorticoids, but not by temozolomide and radiation. J Neurochem 2018;144:139-51.
                    DOI
               149.      Huarte M. The emerging role of lncRNAs in cancer. Nat Med 2015;21:1253-61.  DOI  PubMed
               150.      Zhang R, Xia LQ, Lu WW, Zhang J, Zhu JS. LncRNAs and cancer. Oncol Lett 2016;12:1233-9.  DOI  PubMed  PMC
               151.      Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell 2016;29:452-63.  DOI  PubMed  PMC
               152.      Ghafouri-Fard S, Agabalazadeh A, Abak A, et al. Role of long non-coding RNAs in conferring resistance in tumors of the nervous
                    system. Front Oncol 2021;11:670917.  DOI  PubMed  PMC
               153.      Li Z, Zhang J, Zheng H, et al. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide
                    resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res
                    2019;38:380.  DOI  PubMed  PMC
               154.      Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic
                    activities. Nat Med 2008;14:1271-7.  DOI  PubMed
               155.      Ye X, Wei W, Zhang Z, et al. Identification of microRNAs associated with glioma diagnosis and prognosis. Oncotarget
                    2017;8:26394-403.  DOI  PubMed  PMC
               156.      Yang J, Liu R, Deng Y, et al. MiR-15a/16 deficiency enhances anti-tumor immunity of glioma-infiltrating CD8+ T cells through
                    targeting mTOR. Int J Cancer 2017;141:2082-92.  DOI
               157.      Hübner M, Moellhoff N, Effinger D, et al. MicroRNA-93 acts as an “anti-inflammatory tumor suppressor” in glioblastoma.
                    Neurooncol Adv 2020;2:vdaa047.  DOI  PubMed  PMC
               158.      Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with
   85   86   87   88   89   90   91   92   93   94   95