Page 88 - Read Online
P. 88
Sharma et al. Cancer Drug Resist 2023;6:688-708 https://dx.doi.org/10.20517/cdr.2023.82 Page 704
66. Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol
2021;32:34-48. DOI
67. Reardon DA, Schuster J, Tran DD, et al. ReACT: overall survival from a randomized phase II study of rindopepimut (CDX-110) plus
bevacizumab in relapsed glioblastoma. J Clin Oncol 2015;33:2009. DOI
68. Wen PY, Reardon DA, Phuphanich S, et al. A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC)
vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients. J Clin Oncol 2014;32:2005. DOI
69. Liau LM, Ashkan K, Tran DD, et al. Correction to: first results on survival from a large phase 3 clinical trial of an autologous
dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 2018;16:179. DOI
70. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2016;15:660.
DOI PubMed PMC
71. Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol 2020;13:84. DOI
PubMed PMC
72. Engeland CE, Bell JC. Introduction to oncolytic virotherapy. In: Engeland CE, editor. Oncolytic Viruses. New York: Springer; 2020.
p. 1-6. DOI
73. Filley AC, Dey M. Immune system, friend or foe of oncolytic virotherapy? Front Oncol 2017;7:106. DOI PubMed PMC
74. Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition
via dynamic intratumoral immune modulation. Mol Ther Oncolytics 2021;22:129-42. DOI PubMed PMC
75. Suryawanshi YR, Schulze AJ. Oncolytic viruses for malignant glioma: on the verge of success? Viruses 2021;13:1294. DOI
PubMed PMC
76. Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors.
Cancer Discov 2020;10:1808-25. DOI PubMed PMC
77. Kao C, Powers E, Datto MB, et al. Tumor mutational burden (TMB) as a predictive biomarker of immune checkpoint blockade (ICB)
in metastatic solid tumors. J Clin Oncol 2020;38:80. DOI
78. Leo A, Ugolini A, Veglia F. Myeloid cells in glioblastoma microenvironment. Cells 2020;10:18. DOI PubMed PMC
79. Ravi VM, Neidert N, Will P, et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing
interleukin-10. Nat Commun 2022;13:925. DOI PubMed PMC
80. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 2017;276:80-
96. DOI PubMed PMC
81. Chongsathidkiet P, Jackson C, Koyama S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other
intracranial tumors. Nat Med 2018;24:1459-68. DOI PubMed PMC
82. Garris CS, Blaho VA, Hla T, Han MH. Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond. Immunology
2014;142:347-53. DOI PubMed PMC
83. Sengupta S, Marrinan J, Frishman C, Sampath P. Impact of temozolomide on immune response during malignant glioma
chemotherapy. Clin Dev Immunol 2012;2012:831090. DOI PubMed PMC
84. Mapelli R, Julita C, Bianchi SP, et al. Association between treatment-related lymphopenia and survival in glioblastoma patients
following postoperative chemoradiotherapy. Strahlenther Onkol 2022;198:448-57. DOI PubMed PMC
85. Lamano JB, Lamano JB, Li YD, et al. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and
promotes tumor growth. Clin Cancer Res 2019;25:3643-57. DOI PubMed PMC
86. Wainwright DA, Balyasnikova IV, Chang AL, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells
and negatively impacts survival. Clin Cancer Res 2012;18:6110-21. DOI PubMed PMC
87. Xu L, Xiao H, Xu M, Zhou C, Yi L, Liang H. Glioma-derived T cell immunoglobulin- and mucin domain-containing molecule-4
(TIM4) contributes to tumor tolerance. J Biol Chem 2011;286:36694-9. DOI PubMed PMC
88. Yekula A, Yekula A, Muralidharan K, Kang K, Carter BS, Balaj L. Extracellular vesicles in glioblastoma tumor microenvironment.
Front Immunol 2019;10:3137. DOI PubMed PMC
89. Becker AP, Sells BE, Haque SJ, Chakravarti A. Tumor heterogeneity in glioblastomas: from light microscopy to molecular
pathology. Cancers 2021;13:761. DOI PubMed PMC
90. Darmanis S, Sloan SA, Croote D, et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human
glioblastoma. Cell Rep 2017;21:1399-410. DOI PubMed PMC
91. Xie Y, He L, Lugano R, et al. Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell
RNA sequencing. JCI Insight 2021;6:e150861. DOI PubMed PMC
92. Gularyan SK, Gulin AA, Anufrieva KS, et al. Investigation of inter- and intratumoral heterogeneity of glioblastoma using TOF-
SIMS. Mol Cell Proteomics 2020;19:960-70. DOI PubMed PMC
93. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science
2014;344:1396-401. DOI PubMed PMC
94. Martínez A, Madurga R, García-Romero N, Ayuso-Sacido Á. Unravelling glioblastoma heterogeneity by means of single-cell RNA
sequencing. Cancer Lett 2022;527:66-79. DOI PubMed
95. Zhang P, Xia Q, Liu L, Li S, Dong L. Current opinion on molecular characterization for GBM classification in guiding clinical
diagnosis, prognosis, and therapy. Front Mol Biosci 2020;7:562798. DOI PubMed PMC
96. Chen X, Fan X, Zhao C, et al. Molecular subtyping of glioblastoma based on immune-related genes for prognosis. Sci Rep