Page 89 - Read Online
P. 89
Page 705 Sharma et al. Cancer Drug Resist 2023;6:688-708 https://dx.doi.org/10.20517/cdr.2023.82
2020;10:15495. DOI PubMed PMC
97. Neftel C, Laffy J, Filbin MG, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell
2019;178:835-49.e21. DOI PubMed PMC
98. Schaettler MO, Richters MM, Wang AZ, et al. Characterization of the genomic and immunologic diversity of malignant brain tumors
through multisector analysis. Cancer Discov 2022;12:154-71. DOI PubMed PMC
99. Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. Overview of methodologies for T-cell receptor repertoire
analysis. BMC Biotechnol 2017;17:61. DOI PubMed PMC
100. Fu W, Wang W, Li H, et al. Single-cell atlas reveals complexity of the immunosuppressive microenvironment of initial and recurrent
glioblastoma. Front Immunol 2020;11:835. DOI PubMed PMC
101. Pinton L, Masetto E, Vettore M, et al. The immune suppressive microenvironment of human gliomas depends on the accumulation of
bone marrow-derived macrophages in the center of the lesion. J Immunother Cancer 2019;7:58. DOI PubMed PMC
102. Coy S, Wang S, Stopka SA, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in
glioblastoma. Nat Commun 2022;13:4814. DOI
103. Verkhratsky A, Burnstock G. Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple
functional significance. Bioessays 2014;36:697-705. DOI PubMed
104. Rodrigues JC, Gonzalez GC, Zhang L, et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor
cell-like properties. Neuro Oncol 2010;12:351-65. DOI PubMed PMC
105. Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in immunotherapy presented by the glioblastoma multiforme
microenvironment. Clin Dev Immunol 2011;2011:732413. DOI PubMed PMC
106. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1
expression in tumor-associated macrophages. Clin Cancer Res 2013;19:3165-75. DOI PubMed PMC
107. Jacobs JF, Idema AJ, Bol KF, et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J
Neuroimmunol 2010;225:195-9. DOI
108. Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic
approaches. Scand J Immunol 2022;96:e13201. DOI PubMed
109. Crane CA, Ahn BJ, Han SJ, Parsa AT. Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and
expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol 2012;14:584-95. DOI PubMed PMC
110. Woroniecka K, Chongsathidkiet P, Rhodin K, et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma.
Clin Cancer Res 2018;24:4175-86. DOI PubMed PMC
111. Mohme M, Neidert MC. Tumor-specific T cell activation in malignant brain tumors. Front Immunol 2020;11:205. DOI PubMed
PMC
112. Liu S, Liu X, Zhang C, Shan W, Qiu X. T-cell exhaustion status under high and low levels of hypoxia-inducible factor 1α expression
in glioma. Front Pharmacol 2021;12:711772. DOI PubMed PMC
113. Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common
role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001;182:18-32. DOI
114. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of Foxp3 CD4 CD25 T cells. Immunity
+
+
+
2006;25:249-59. DOI
115. Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 2012;30:733-58. DOI
PubMed
116. Noyes D, Bag A, Oseni S, et al. Tumor-associated Tregs obstruct antitumor immunity by promoting T cell dysfunction and restricting
clonal diversity in tumor-infiltrating CD8+ T cells. J Immunother Cancer 2022;10:e004605. DOI PubMed PMC
117. Amoozgar Z, Kloepper J, Ren J, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine
glioblastomas. Nat Commun 2021;12:2582. DOI PubMed PMC
118. Yang F, He Z, Duan H, et al. Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nat Commun
2021;12:3424. DOI PubMed PMC
119. Domenis R, Cesselli D, Toffoletto B, et al. Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated
by monocytic myeloid-derived suppressor cells. PLoS One 2017;12:e0169932. DOI PubMed PMC
120. O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen
loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9:eaaa0984. DOI PubMed PMC
121. Zagzag D, Salnikow K, Chiriboga L, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells:
stealth invasion of the brain. Lab Invest 2005;85:328-41. DOI
122. Pistollato F, Chen HL, Rood BR, et al. Hypoxia and HIF1α repress the differentiative effects of BMPs in high-grade glioma. Stem
Cells 2009;27:7-17. DOI
123. Filatova A, Seidel S, Böğürcü N, Gräf S, Garvalov BK, Acker T. Acidosis acts through HSP90 in a PHD/VHL-independent manner
to promote HIF function and stem cell maintenance in glioma. Cancer Res 2016;76:5845-56. DOI
124. Murat A, Migliavacca E, Gorlia T, et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor
expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 2008;26:3015-24. DOI
125. Goffart N, Lombard A, Lallemand F, et al. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone.
Neuro Oncol 2017;19:66-77. DOI PubMed PMC