Page 89 - Read Online
P. 89

Page 705                                         Sharma et al. Cancer Drug Resist 2023;6:688-708  https://dx.doi.org/10.20517/cdr.2023.82

                    2020;10:15495.  DOI  PubMed  PMC
               97.       Neftel C, Laffy J, Filbin MG, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell
                    2019;178:835-49.e21.  DOI  PubMed  PMC
               98.       Schaettler MO, Richters MM, Wang AZ, et al. Characterization of the genomic and immunologic diversity of malignant brain tumors
                    through multisector analysis. Cancer Discov 2022;12:154-71.  DOI  PubMed  PMC
               99.       Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. Overview of methodologies for T-cell receptor repertoire
                    analysis. BMC Biotechnol 2017;17:61.  DOI  PubMed  PMC
               100.      Fu W, Wang W, Li H, et al. Single-cell atlas reveals complexity of the immunosuppressive microenvironment of initial and recurrent
                    glioblastoma. Front Immunol 2020;11:835.  DOI  PubMed  PMC
               101.      Pinton L, Masetto E, Vettore M, et al. The immune suppressive microenvironment of human gliomas depends on the accumulation of
                    bone marrow-derived macrophages in the center of the lesion. J Immunother Cancer 2019;7:58.  DOI  PubMed  PMC
               102.      Coy S, Wang S, Stopka SA, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in
                    glioblastoma. Nat Commun 2022;13:4814.  DOI
               103.      Verkhratsky A, Burnstock G. Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple
                    functional significance. Bioessays 2014;36:697-705.  DOI  PubMed
               104.      Rodrigues JC, Gonzalez GC, Zhang L, et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor
                    cell-like properties. Neuro Oncol 2010;12:351-65.  DOI  PubMed  PMC
               105.      Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in immunotherapy presented by the glioblastoma multiforme
                    microenvironment. Clin Dev Immunol 2011;2011:732413.  DOI  PubMed  PMC
               106.      Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1
                    expression in tumor-associated macrophages. Clin Cancer Res 2013;19:3165-75.  DOI  PubMed  PMC
               107.      Jacobs JF, Idema AJ, Bol KF, et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J
                    Neuroimmunol 2010;225:195-9.  DOI
               108.      Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic
                    approaches. Scand J Immunol 2022;96:e13201.  DOI  PubMed
               109.      Crane CA, Ahn BJ, Han SJ, Parsa AT. Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and
                    expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol 2012;14:584-95.  DOI  PubMed  PMC
               110.      Woroniecka K, Chongsathidkiet P, Rhodin K, et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma.
                    Clin Cancer Res 2018;24:4175-86.  DOI  PubMed  PMC
               111.      Mohme M, Neidert MC. Tumor-specific T cell activation in malignant brain tumors. Front Immunol 2020;11:205.  DOI  PubMed
                    PMC
               112.      Liu S, Liu X, Zhang C, Shan W, Qiu X. T-cell exhaustion status under high and low levels of hypoxia-inducible factor 1α expression
                    in glioma. Front Pharmacol 2021;12:711772.  DOI  PubMed  PMC
               113.      Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common
                    role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001;182:18-32.  DOI
               114.      Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of Foxp3 CD4 CD25  T cells. Immunity
                                                                                    +
                                                                                            +
                                                                                        +
                    2006;25:249-59.  DOI
               115.      Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 2012;30:733-58.  DOI
                    PubMed
               116.      Noyes D, Bag A, Oseni S, et al. Tumor-associated Tregs obstruct antitumor immunity by promoting T cell dysfunction and restricting
                    clonal diversity in tumor-infiltrating CD8+ T cells. J Immunother Cancer 2022;10:e004605.  DOI  PubMed  PMC
               117.      Amoozgar Z, Kloepper J, Ren J, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine
                    glioblastomas. Nat Commun 2021;12:2582.  DOI  PubMed  PMC
               118.      Yang F, He Z, Duan H, et al. Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nat Commun
                    2021;12:3424.  DOI  PubMed  PMC
               119.      Domenis R, Cesselli D, Toffoletto B, et al. Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated
                    by monocytic myeloid-derived suppressor cells. PLoS One 2017;12:e0169932.  DOI  PubMed  PMC
               120.      O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen
                    loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9:eaaa0984.  DOI  PubMed  PMC
               121.      Zagzag D, Salnikow K, Chiriboga L, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells:
                    stealth invasion of the brain. Lab Invest 2005;85:328-41.  DOI
               122.      Pistollato F, Chen HL, Rood BR, et al. Hypoxia and HIF1α repress the differentiative effects of BMPs in high-grade glioma. Stem
                    Cells 2009;27:7-17.  DOI
               123.      Filatova A, Seidel S, Böğürcü N, Gräf S, Garvalov BK, Acker T. Acidosis acts through HSP90 in a PHD/VHL-independent manner
                    to promote HIF function and stem cell maintenance in glioma. Cancer Res 2016;76:5845-56.  DOI
               124.      Murat A, Migliavacca E, Gorlia T, et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor
                    expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 2008;26:3015-24.  DOI
               125.      Goffart N, Lombard A, Lallemand F, et al. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone.
                    Neuro Oncol 2017;19:66-77.  DOI  PubMed  PMC
   84   85   86   87   88   89   90   91   92   93   94