Page 60 - Read Online
P. 60
Page 209 Jabbari et al. Art Int Surg. 2025;5:200-9 https://dx.doi.org/10.20517/ais.2024.77
48. Li F, Han J, Cao T, et al. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc Natl
Acad Sci U S A. 2019;116:11259-64. DOI PubMed PMC
49. Kosuri S, Borca CH, Mugnier H, et al. Machine-assisted discovery of chondroitinase ABC complexes toward sustained neural
regeneration. Adv Healthc Mater. 2022;11:e2102101. DOI PubMed PMC
50. Miller WC, Speechley M, Deathe AB. Balance confidence among people with lower-limb amputations. Phys Ther. 2002;82:856-65.
PubMed
51. Miller WC, Speechley M, Deathe B. The prevalence and risk factors of falling and fear of falling among lower extremity amputees.
Arch Phys Med Rehabil. 2001;82:1031-7. DOI PubMed
52. Blanke O. Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci. 2012;13:556-71. DOI PubMed
53. Jaegers SM, Arendzen JH, de Jongh HJ. Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med
Rehabil. 1995;76:736-43. DOI PubMed
54. Crea S, Cipriani C, Donati M, Carrozza MC, Vitiello N. Providing time-discrete gait information by wearable feedback apparatus for
lower-limb amputees: usability and functional validation. IEEE Trans Neural Syst Rehabil Eng. 2015;23:250-7. DOI PubMed
55. Fan RE, Culjat MO, King CH, et al. A haptic feedback system for lower-limb prostheses. IEEE Trans Neural Syst Rehabil Eng.
2008;16:270-7. DOI PubMed
56. Dietrich C, Nehrdich S, Seifert S, et al. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases
functionality. Front Neurol. 2018;9:270. DOI PubMed PMC
57. Crea S, Edin BB, Knaepen K, Meeusen R, Vitiello N. Time-discrete vibrotactile feedback contributes to improved gait symmetry in
patients with lower limb amputations: case series. Phys Ther. 2017;97:198-207. DOI PubMed
58. Raspopovic S. Advancing limb neural prostheses. Science. 2020;370:290-1. DOI PubMed
59. Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch
perception. Sci Transl Med. 2014;6:257ra138. DOI PubMed PMC
60. Davis TS, Wark HA, Hutchinson DT, et al. Restoring motor control and sensory feedback in people with upper extremity amputations
using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13:036001. DOI PubMed
61. Charkhkar H, Shell CE, Marasco PD, Pinault GJ, Tyler DJ, Triolo RJ. High-density peripheral nerve cuffs restore natural sensation to
individuals with lower-limb amputations. J Neural Eng. 2018;15:056002. DOI PubMed
62. Koh RGL, Balas M, Nachman AI, Zariffa J. Selective peripheral nerve recordings from nerve cuff electrodes using convolutional
neural networks. J Neural Eng. 2020;17:016042. DOI PubMed
63. Petrini FM, Valle G, Bumbasirevic M, et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci
Transl Med. 2019;11:eaav8939. DOI PubMed
64. Zelechowski M, Valle G, Raspopovic S. A computational model to design neural interfaces for lower-limb sensory neuroprostheses. J
Neuroeng Rehabil. 2020;17:24. DOI PubMed PMC
65. Hebert JS, Rehani M, Stiegelmar R. Osseointegration for lower-limb amputation: a systematic review of clinical outcomes. JBJS Rev.
2017;5:e10. DOI PubMed
66. Lu L, Zhang J, Guan K, Zhou J, Yuan F, Guan Y. Artificial neural network for cytocompatibility and antibacterial enhancement
induced by femtosecond laser micro/nano structures. J Nanobiotechnology. 2022;20:365. DOI PubMed PMC
67. Revilla-León M, Gómez-Polo M, Vyas S, et al. Artificial intelligence applications in implant dentistry: a systematic review. J Prosthet
Dent. 2023;129:293-300. DOI PubMed
68. Khan B, Fatima H, Qureshi A, et al. Drawbacks of artificial intelligence and their potential solutions in the healthcare sector. Biomed
Mater Devices. 2023;1:731-8. DOI PubMed PMC

