Page 60 - Read Online
P. 60

Page 209                           Jabbari et al. Art Int Surg. 2025;5:200-9  https://dx.doi.org/10.20517/ais.2024.77

               48.      Li F, Han J, Cao T, et al. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc Natl
                   Acad Sci U S A. 2019;116:11259-64.  DOI  PubMed  PMC
               49.      Kosuri S, Borca CH, Mugnier H, et al. Machine-assisted discovery of chondroitinase ABC complexes toward sustained neural
                   regeneration. Adv Healthc Mater. 2022;11:e2102101.  DOI  PubMed  PMC
               50.      Miller WC, Speechley M, Deathe AB. Balance confidence among people with lower-limb amputations. Phys Ther. 2002;82:856-65.
                   PubMed
               51.      Miller WC, Speechley M, Deathe B. The prevalence and risk factors of falling and fear of falling among lower extremity amputees.
                   Arch Phys Med Rehabil. 2001;82:1031-7.  DOI  PubMed
               52.      Blanke O. Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci. 2012;13:556-71.  DOI  PubMed
               53.      Jaegers SM, Arendzen JH, de Jongh HJ. Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med
                   Rehabil. 1995;76:736-43.  DOI  PubMed
               54.      Crea S, Cipriani C, Donati M, Carrozza MC, Vitiello N. Providing time-discrete gait information by wearable feedback apparatus for
                   lower-limb amputees: usability and functional validation. IEEE Trans Neural Syst Rehabil Eng. 2015;23:250-7.  DOI  PubMed
               55.      Fan RE, Culjat MO, King CH, et al. A haptic feedback system for lower-limb prostheses. IEEE Trans Neural Syst Rehabil Eng.
                   2008;16:270-7.  DOI  PubMed
               56.      Dietrich C, Nehrdich S, Seifert S, et al. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases
                   functionality. Front Neurol. 2018;9:270.  DOI  PubMed  PMC
               57.      Crea S, Edin BB, Knaepen K, Meeusen R, Vitiello N. Time-discrete vibrotactile feedback contributes to improved gait symmetry in
                   patients with lower limb amputations: case series. Phys Ther. 2017;97:198-207.  DOI  PubMed
               58.      Raspopovic S. Advancing limb neural prostheses. Science. 2020;370:290-1.  DOI  PubMed
               59.      Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch
                   perception. Sci Transl Med. 2014;6:257ra138.  DOI  PubMed  PMC
               60.      Davis TS, Wark HA, Hutchinson DT, et al. Restoring motor control and sensory feedback in people with upper extremity amputations
                   using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13:036001.  DOI  PubMed
               61.      Charkhkar H, Shell CE, Marasco PD, Pinault GJ, Tyler DJ, Triolo RJ. High-density peripheral nerve cuffs restore natural sensation to
                   individuals with lower-limb amputations. J Neural Eng. 2018;15:056002.  DOI  PubMed
               62.      Koh RGL, Balas M, Nachman AI, Zariffa J. Selective peripheral nerve recordings from nerve cuff electrodes using convolutional
                   neural networks. J Neural Eng. 2020;17:016042.  DOI  PubMed
               63.      Petrini FM, Valle G, Bumbasirevic M, et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci
                   Transl Med. 2019;11:eaav8939.  DOI  PubMed
               64.      Zelechowski M, Valle G, Raspopovic S. A computational model to design neural interfaces for lower-limb sensory neuroprostheses. J
                   Neuroeng Rehabil. 2020;17:24.  DOI  PubMed  PMC
               65.      Hebert JS, Rehani M, Stiegelmar R. Osseointegration for lower-limb amputation: a systematic review of clinical outcomes. JBJS Rev.
                   2017;5:e10.  DOI  PubMed
               66.      Lu L, Zhang J, Guan K, Zhou J, Yuan F, Guan Y. Artificial neural network for cytocompatibility and antibacterial enhancement
                   induced by femtosecond laser micro/nano structures. J Nanobiotechnology. 2022;20:365.  DOI  PubMed  PMC
               67.      Revilla-León M, Gómez-Polo M, Vyas S, et al. Artificial intelligence applications in implant dentistry: a systematic review. J Prosthet
                   Dent. 2023;129:293-300.  DOI  PubMed
               68.      Khan B, Fatima H, Qureshi A, et al. Drawbacks of artificial intelligence and their potential solutions in the healthcare sector. Biomed
                   Mater Devices. 2023;1:731-8.  DOI  PubMed  PMC
   55   56   57   58   59   60   61   62   63   64   65