Page 59 - Read Online
P. 59
Jabbari et al. Art Int Surg. 2025;5:200-9 https://dx.doi.org/10.20517/ais.2024.77 Page 208
PMC
19. Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Rob Res. 2008;27:263-73. DOI
PubMed PMC
20. Huang H, Kuiken TA, Lipschutz RD. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans
Biomed Eng. 2009;56:65-73. DOI PubMed PMC
21. Hargrove LJ, Simon AM, Young AJ, et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med.
2013;369:1237-42. DOI PubMed
22. Keller M, Guebeli A, Thieringer F, Honigmann P. Artificial intelligence in patient-specific hand surgery: a scoping review of
literature. Int J Comput Assist Radiol Surg. 2023;18:1393-403. DOI PubMed PMC
23. Komura D, Ishikawa S. Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J. 2018;16:34-42.
DOI PubMed PMC
24. Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease
management. Nat Rev Cardiol. 2021;18:465-78. DOI PubMed PMC
25. Dai L, Zhou Q, Zhou H, et al. Deep learning-based classification of lower extremity arterial stenosis in computed tomography
angiography. Eur J Radiol. 2021;136:109528. DOI PubMed
26. Zhang JL, Conlin CC, Li X, et al. Exercise-induced calf muscle hyperemia: rapid mapping of magnetic resonance imaging using deep
learning approach. Physiol Rep. 2020;8:e14563. DOI PubMed PMC
27. McDermott MM. Lower extremity manifestations of peripheral artery disease: the pathophysiologic and functional implications of leg
ischemia. Circ Res. 2015;116:1540-50. DOI PubMed PMC
28. Hippe DS, Balu N, Chen L, et al. Confidence weighting for robust automated measurements of popliteal vessel wall magnetic
resonance imaging. Circ Genom Precis Med. 2020;13:e002870. DOI PubMed
29. Chen L, Canton G, Liu W, et al. Fully automated and robust analysis technique for popliteal artery vessel wall evaluation (FRAPPE)
using neural network models from standardized knee MRI. Magn Reson Med. 2020;84:2147-60. DOI PubMed PMC
30. Kim S, Hahn JO, Youn BD. Detection and severity assessment of peripheral occlusive artery disease via deep learning analysis of
arterial pulse waveforms: proof-of-concept and potential challenges. Front Bioeng Biotechnol. 2020;8:720. DOI PubMed PMC
31. Allen J, Liu H, Iqbal S, Zheng D, Stansby G. Deep learning-based photoplethysmography classification for peripheral arterial disease
detection: a proof-of-concept study. Physiol Meas. 2021;42:054002. DOI PubMed
32. Chemello G, Salvatori B, Morettini M, Tura A. Artificial intelligence methodologies applied to technologies for screening, diagnosis
and care of the diabetic foot: a narrative review. Biosensors. 2022;12:985. DOI PubMed PMC
33. Howard T, Ahluwalia R, Papanas N. The advent of artificial intelligence in diabetic foot medicine: a new horizon, a new order, or a
false dawn? Int J Low Extrem Wounds. 2023;22:635-40. DOI PubMed
34. Cassidy B, Hoon Yap M, Pappachan JM, et al. Artificial intelligence for automated detection of diabetic foot ulcers: a real-world
proof-of-concept clinical evaluation. Diabetes Res Clin Pract. 2023;205:110951. DOI PubMed
35. Chung J, Freeman NLB, Kosorok MR, Marston WA, Conte MS, McGinigle KL. Analysis of a machine learning-based risk
stratification scheme for chronic limb-threatening ischemia. JAMA Netw Open. 2022;5:e223424. DOI PubMed PMC
36. Oei CW, Chan YM, Zhang X, et al. Risk prediction of diabetic foot amputation using machine learning and explainable artificial
intelligence. J Diabetes Sci Technol. 2024:19322968241228606. DOI PubMed PMC
37. Tjardes T, Marche B, Imach S. Mangled extremity: limb salvage for reconstruction versus primary amputation. Curr Opin Crit Care.
2023;29:682-8. DOI PubMed
38. Perkins ZB, Yet B, Sharrock A, et al. Predicting the outcome of limb revascularization in patients with lower-extremity arterial trauma:
development and external validation of a supervised machine-learning algorithm to support surgical decisions. Ann Surg.
2020;272:564-72. DOI PubMed
39. Soffin EM, Lee BH, Kumar KK, Wu CL. The prescription opioid crisis: role of the anaesthesiologist in reducing opioid use and
misuse. Br J Anaesth. 2019;122:e198-208. DOI PubMed PMC
40. Lawal OD, Gold J, Murthy A, et al. Rate and risk factors associated with prolonged opioid use after surgery: a systematic review and
meta-analysis. JAMA Netw Open. 2020;3:e207367. DOI PubMed PMC
41. Gabriel RA, Harjai B, Prasad RS, et al. Machine learning approach to predicting persistent opioid use following lower extremity joint
arthroplasty. Reg Anesth Pain Med. 2022;47:313-9. DOI PubMed PMC
42. Ortiz-Catalan M, Guðmundsdóttir RA, Kristoffersen MB, et al. Phantom motor execution facilitated by machine learning and
augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb
pain. Lancet. 2016;388:2885-94. DOI PubMed
43. Romeo-Guitart D, Forés J, Herrando-Grabulosa M, et al. Neuroprotective drug for nerve trauma revealed using artificial intelligence.
Sci Rep. 2018;8:1879. DOI PubMed PMC
44. Daeschler SC, Bourget MH, Derakhshan D, et al. Rapid, automated nerve histomorphometry through open-source artificial
intelligence. Sci Rep. 2022;12:5975. DOI PubMed PMC
45. Huang Y, Wu W, Liu H, et al. 3D printing of functional nerve guide conduits. Burns Trauma. 2021;9:tkab011. DOI PubMed PMC
46. Xiao B, Feturi F, Su AA, et al. Nerve wrap for local delivery of FK506/tacrolimus accelerates nerve regeneration. Int J Mol Sci.
2024;25:847. DOI PubMed PMC
47. Guo JL, Januszyk M, Longaker MT. Machine learning in tissue engineering. Tissue Eng Part A. 2023;29:2-19. DOI PubMed PMC

