Page 59 - Read Online
P. 59

Jabbari et al. Art Int Surg. 2025;5:200-9  https://dx.doi.org/10.20517/ais.2024.77       Page 208

                   PMC
               19.      Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Rob Res. 2008;27:263-73.  DOI
                   PubMed  PMC
               20.      Huang H, Kuiken TA, Lipschutz RD. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans
                   Biomed Eng. 2009;56:65-73.  DOI  PubMed  PMC
               21.      Hargrove LJ, Simon AM, Young AJ, et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med.
                   2013;369:1237-42.  DOI  PubMed
               22.      Keller M, Guebeli A, Thieringer F, Honigmann P. Artificial intelligence in patient-specific hand surgery: a scoping review of
                   literature. Int J Comput Assist Radiol Surg. 2023;18:1393-403.  DOI  PubMed  PMC
               23.      Komura D, Ishikawa S. Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J. 2018;16:34-42.
                   DOI  PubMed  PMC
               24.      Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease
                   management. Nat Rev Cardiol. 2021;18:465-78.  DOI  PubMed  PMC
               25.      Dai L, Zhou Q, Zhou H, et al. Deep learning-based classification of lower extremity arterial stenosis in computed tomography
                   angiography. Eur J Radiol. 2021;136:109528.  DOI  PubMed
               26.      Zhang JL, Conlin CC, Li X, et al. Exercise-induced calf muscle hyperemia: rapid mapping of magnetic resonance imaging using deep
                   learning approach. Physiol Rep. 2020;8:e14563.  DOI  PubMed  PMC
               27.      McDermott MM. Lower extremity manifestations of peripheral artery disease: the pathophysiologic and functional implications of leg
                   ischemia. Circ Res. 2015;116:1540-50.  DOI  PubMed  PMC
               28.      Hippe DS, Balu N, Chen L, et al. Confidence weighting for robust automated measurements of popliteal vessel wall magnetic
                   resonance imaging. Circ Genom Precis Med. 2020;13:e002870.  DOI  PubMed
               29.      Chen L, Canton G, Liu W, et al. Fully automated and robust analysis technique for popliteal artery vessel wall evaluation (FRAPPE)
                   using neural network models from standardized knee MRI. Magn Reson Med. 2020;84:2147-60.  DOI  PubMed  PMC
               30.      Kim S, Hahn JO, Youn BD. Detection and severity assessment of peripheral occlusive artery disease via deep learning analysis of
                   arterial pulse waveforms: proof-of-concept and potential challenges. Front Bioeng Biotechnol. 2020;8:720.  DOI  PubMed  PMC
               31.      Allen J, Liu H, Iqbal S, Zheng D, Stansby G. Deep learning-based photoplethysmography classification for peripheral arterial disease
                   detection: a proof-of-concept study. Physiol Meas. 2021;42:054002.  DOI  PubMed
               32.      Chemello G, Salvatori B, Morettini M, Tura A. Artificial intelligence methodologies applied to technologies for screening, diagnosis
                   and care of the diabetic foot: a narrative review. Biosensors. 2022;12:985.  DOI  PubMed  PMC
               33.      Howard T, Ahluwalia R, Papanas N. The advent of artificial intelligence in diabetic foot medicine: a new horizon, a new order, or a
                   false dawn? Int J Low Extrem Wounds. 2023;22:635-40.  DOI  PubMed
               34.      Cassidy B, Hoon Yap M, Pappachan JM, et al. Artificial intelligence for automated detection of diabetic foot ulcers: a real-world
                   proof-of-concept clinical evaluation. Diabetes Res Clin Pract. 2023;205:110951.  DOI  PubMed
               35.      Chung J, Freeman NLB, Kosorok MR, Marston WA, Conte MS, McGinigle KL. Analysis of a machine learning-based risk
                   stratification scheme for chronic limb-threatening ischemia. JAMA Netw Open. 2022;5:e223424.  DOI  PubMed  PMC
               36.      Oei CW, Chan YM, Zhang X, et al. Risk prediction of diabetic foot amputation using machine learning and explainable artificial
                   intelligence. J Diabetes Sci Technol. 2024:19322968241228606.  DOI  PubMed  PMC
               37.      Tjardes T, Marche B, Imach S. Mangled extremity: limb salvage for reconstruction versus primary amputation. Curr Opin Crit Care.
                   2023;29:682-8.  DOI  PubMed
               38.      Perkins ZB, Yet B, Sharrock A, et al. Predicting the outcome of limb revascularization in patients with lower-extremity arterial trauma:
                   development and external validation of a supervised machine-learning algorithm to support surgical decisions.  Ann Surg.
                   2020;272:564-72.  DOI  PubMed
               39.      Soffin EM, Lee BH, Kumar KK, Wu CL. The prescription opioid crisis: role of the anaesthesiologist in reducing opioid use and
                   misuse. Br J Anaesth. 2019;122:e198-208.  DOI  PubMed  PMC
               40.      Lawal OD, Gold J, Murthy A, et al. Rate and risk factors associated with prolonged opioid use after surgery: a systematic review and
                   meta-analysis. JAMA Netw Open. 2020;3:e207367.  DOI  PubMed  PMC
               41.      Gabriel RA, Harjai B, Prasad RS, et al. Machine learning approach to predicting persistent opioid use following lower extremity joint
                   arthroplasty. Reg Anesth Pain Med. 2022;47:313-9.  DOI  PubMed  PMC
               42.      Ortiz-Catalan M, Guðmundsdóttir RA, Kristoffersen MB, et al. Phantom motor execution facilitated by machine learning and
                   augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb
                   pain. Lancet. 2016;388:2885-94.  DOI  PubMed
               43.      Romeo-Guitart D, Forés J, Herrando-Grabulosa M, et al. Neuroprotective drug for nerve trauma revealed using artificial intelligence.
                   Sci Rep. 2018;8:1879.  DOI  PubMed  PMC
               44.      Daeschler SC, Bourget MH, Derakhshan D, et al. Rapid, automated nerve histomorphometry through open-source artificial
                   intelligence. Sci Rep. 2022;12:5975.  DOI  PubMed  PMC
               45.      Huang Y, Wu W, Liu H, et al. 3D printing of functional nerve guide conduits. Burns Trauma. 2021;9:tkab011.  DOI  PubMed  PMC
               46.      Xiao B, Feturi F, Su AA, et al. Nerve wrap for local delivery of FK506/tacrolimus accelerates nerve regeneration. Int J Mol Sci.
                   2024;25:847.  DOI  PubMed  PMC
               47.      Guo JL, Januszyk M, Longaker MT. Machine learning in tissue engineering. Tissue Eng Part A. 2023;29:2-19.  DOI  PubMed  PMC
   54   55   56   57   58   59   60   61   62   63   64