Page 56 - Read Online
P. 56

Turlip et al. Art Int Surg 2024;4:324-30  https://dx.doi.org/10.20517/ais.2024.29                                                            Page 330

               16.      Durand WM, DePasse JM, Daniels AH. Predictive modeling for blood transfusion after adult spinal deformity surgery: a tree-based
                   machine learning approach. Spine 2018;43:1058-66.  DOI  PubMed
               17.      Wang SK, Wang P, Li ZE, et al. Development and external validation of a predictive model for prolonged length of hospital stay in
                   elderly patients undergoing lumbar fusion surgery: comparison of three predictive models. Eur Spine J 2024;33:1044-54.  DOI
                   PubMed
               18.      Sebastian A, Goyal A, Alvi MA, et al. Assessing the performance of national surgical quality improvement program surgical risk
                   calculator in elective spine surgery: insights from patients undergoing single-level posterior lumbar fusion. World Neurosurg
                   2019;126:e323-9.  DOI  PubMed
               19.      Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M. Can machine learning algorithms accurately predict discharge
                   to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J Neurosurg
                   Spine 2019;31:568-78.  DOI  PubMed
               20.      Broda A, Sanford Z, Turcotte J, Patton C. Development of a risk prediction model with improved clinical utility in elective cervical
                   and lumbar spine surgery. Spine 2020;45:E542-51.  DOI  PubMed
               21.      Churruca K, Pomare C, Ellis LA, et al. Patient-reported outcome measures (PROMs): a review of generic and condition-specific
                   measures and a discussion of trends and issues. Health Expect 2021;24:1015-24.  DOI  PubMed  PMC
               22.      Dansie EJ, Turk DC. Assessment of patients with chronic pain. Br J Anaesth 2013;111:19-25.  DOI  PubMed  PMC
               23.      Mobbs RJ. From the subjective to the objective era of outcomes analysis: how the tools we use to measure outcomes must change to be
                   reflective of the pathologies we treat in spinal surgery. J Spine Surg 2021;7:456-7.  DOI  PubMed  PMC
               24.      Ahmad HS, Yang AI, Basil GW, et al. Developing a prediction model for identification of distinct perioperative clinical stages in spine
                   surgery with smartphone-based mobility data. Neurosurgery 2022;90:588-96.  DOI  PubMed
               25.      Chauhan D, Ahmad HS, Subtirelu R, et al. Defining the minimal clinically important difference in smartphone-based mobility after
                   spine surgery: correlation of survey questionnaire to mobility data. J Neurosurg Spine 2023;39:427-37.  DOI  PubMed
               26.      Boaro A, Leung J, Reeder HT, et al. Smartphone GPS signatures of patients undergoing spine surgery correlate with mobility and
                   current gold standard outcome measures. J Neurosurg Spine 2021;35:796-806.  DOI  PubMed  PMC
               27.      Lewandrowski KU, Alvim Fiorelli RK, Pereira MG, et al. Polytomous rasch analyses of surgeons’ decision-making on choice of
                   procedure in endoscopic lumbar spinal stenosis decompression surgeries. Int J Spine Surg 2024;18:164-77.  DOI  PubMed  PMC
               28.      Lorio M, Martinson M, Ferrara L. Paired comparison survey analyses utilizing rasch methodology of the relative difficulty and
                                               ®
                   estimated work relative value units of CPT  code 27279. Int J Spine Surg 2016;10:40.  DOI  PubMed  PMC
               29.      Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: what, why, how, when and
                   where? Clin Kidney J 2021;14:49-58.  DOI  PubMed  PMC
               30.      Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers.
                   Radiol Artif Intell 2020;2:e200029.  DOI  PubMed  PMC
               31.      Sounderajah V, Ashrafian H, Golub RM, et al; STARD-AI Steering Committee. Developing a reporting guideline for artificial
                   intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021;11:e047709.  DOI  PubMed  PMC
               32.      Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use
                   regression or machine learning methods. BMJ 2024;385:e078378.  DOI  PubMed  PMC
               33.      Collins GS, Reitsma JB, Altman DG, Moons KG; TRIPOD Group. Transparent reporting of a multivariable prediction model for
                   individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. The TRIPOD Group. Circulation 2015;131:211-9.  DOI
                   PubMed  PMC
               34.      Zamanipoor Najafabadi AH, Ramspek CL, Dekker FW, et al. TRIPOD statement: a preliminary pre-post analysis of reporting and
                   methods of prediction models. BMJ Open 2020;10:e041537.  DOI  PubMed  PMC
   51   52   53   54   55   56   57   58   59   60   61