Page 55 - Read Online
P. 55
Page 329 Turlip et al. Art Int Surg 2024;4:324-30 https://dx.doi.org/10.20517/ais.2024.29
Critical writing: Turlip RW, Khela HS, Dagli MM, Chauhan D, Ghenbot Y, Ahmad HS, Yoon JW
Availability of data and materials
Not applicable.
Financial support and sponsorship
None.
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2024.
REFERENCES
1. Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. JOR Spine 2019;2:e1044. DOI
PubMed PMC
2. Ruiz-España S, Arana E, Moratal D. Semiautomatic computer-aided classification of degenerative lumbar spine disease in magnetic
resonance imaging. Comput Biol Med 2015;62:196-205. DOI PubMed
3. Jamaludin A, Lootus M, Kadir T, et al; Genodisc Consortium. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of
reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is
comparable with an expert radiologist. Eur Spine J 2017;26:1374-83. DOI PubMed
4. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc
degeneration. Spine 2001;26:1873-8. DOI PubMed
5. Johnson PM, Drangova M. Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Magn Reson Med
2019;82:901-10. DOI PubMed
6. Galbusera F, Bassani T, Casaroli G, et al. Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary
test in spine imaging. Eur Radiol Exp 2018;2:29. DOI PubMed PMC
7. Charles YP, Lamas V, Ntilikina Y. Artificial intelligence and treatment algorithms in spine surgery. Orthop Traumatol Surg Res
2023;109:103456. DOI PubMed
8. Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S. Direct estimation of spinal cobb angles by structured multi-output regression.
In: Niethammer M, Styner M, Aylward S, Zhu H, Oguz I, Yap P, Shen D, editors. Information processing in medical imaging. Cham:
Springer International Publishing; 2017. pp. 529-40. DOI
9. Zhang J, Li H, Lv L, Zhang Y. Computer-aided cobb measurement based on automatic detection of vertebral slopes using deep neural
network. Int J Biomed Imaging 2017;2017:9083916. DOI PubMed PMC
10. Wu H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med
Image Anal 2018;48:1-11. DOI PubMed
11. Korez R, Putzier M, Vrtovec T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray
images: performance evaluation. Eur Spine J 2020;29:2295-305. DOI PubMed
12. Pellisé F, Serra-Burriel M, Smith JS, et al; International Spine Study Group, European Spine Study Group. Development and
validation of risk stratification models for adult spinal deformity surgery. J Neurosurg Spine 2019;31:587-99. DOI PubMed
13. Ames CP, Smith JS, Pellisé F, et al; European Spine Study Group, International Spine Study Group. Artificial intelligence based
hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification
scheme that predicts quality and value. Spine 2019;44:915-26. DOI
14. Lee MJ, Cizik AM, Hamilton D, Chapman JR. Predicting surgical site infection after spine surgery: a validated model using a
prospective surgical registry. Spine J 2014;14:2112-7. DOI PubMed
15. Scheer JK, Smith JS, Schwab F, et al; International Spine Study Group. Development of a preoperative predictive model for major
complications following adult spinal deformity surgery. J Neurosurg Spine 2017;26:736-43. DOI PubMed