Page 55 - Read Online
P. 55

Page 329                                                            Turlip et al. Art Int Surg 2024;4:324-30  https://dx.doi.org/10.20517/ais.2024.29

               Critical writing: Turlip RW, Khela HS, Dagli MM, Chauhan D, Ghenbot Y, Ahmad HS, Yoon JW


               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               None.

               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2024.


               REFERENCES
               1.       Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. JOR Spine 2019;2:e1044.  DOI
                   PubMed  PMC
               2.       Ruiz-España S, Arana E, Moratal D. Semiautomatic computer-aided classification of degenerative lumbar spine disease in magnetic
                   resonance imaging. Comput Biol Med 2015;62:196-205.  DOI  PubMed
               3.       Jamaludin A, Lootus M, Kadir T, et al; Genodisc Consortium. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of
                   reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is
                   comparable with an expert radiologist. Eur Spine J 2017;26:1374-83.  DOI  PubMed
               4.       Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc
                   degeneration. Spine 2001;26:1873-8.  DOI  PubMed
               5.       Johnson PM, Drangova M. Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Magn Reson Med
                   2019;82:901-10.  DOI  PubMed
               6.       Galbusera F, Bassani T, Casaroli G, et al. Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary
                   test in spine imaging. Eur Radiol Exp 2018;2:29.  DOI  PubMed  PMC
               7.       Charles YP, Lamas V, Ntilikina Y. Artificial intelligence and treatment algorithms in spine surgery. Orthop Traumatol Surg Res
                   2023;109:103456.  DOI  PubMed
               8.       Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S. Direct estimation of spinal cobb angles by structured multi-output regression.
                   In: Niethammer M, Styner M, Aylward S, Zhu H, Oguz I, Yap P, Shen D, editors. Information processing in medical imaging. Cham:
                   Springer International Publishing; 2017. pp. 529-40.  DOI
               9.       Zhang J, Li H, Lv L, Zhang Y. Computer-aided cobb measurement based on automatic detection of vertebral slopes using deep neural
                   network. Int J Biomed Imaging 2017;2017:9083916.  DOI  PubMed  PMC
               10.      Wu H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med
                   Image Anal 2018;48:1-11.  DOI  PubMed
               11.      Korez R, Putzier M, Vrtovec T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray
                   images: performance evaluation. Eur Spine J 2020;29:2295-305.  DOI  PubMed
               12.      Pellisé F, Serra-Burriel M, Smith JS, et al; International Spine Study Group, European Spine Study Group. Development and
                   validation of risk stratification models for adult spinal deformity surgery. J Neurosurg Spine 2019;31:587-99.  DOI  PubMed
               13.      Ames CP, Smith JS, Pellisé F, et al; European Spine Study Group, International Spine Study Group. Artificial intelligence based
                   hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification
                   scheme that predicts quality and value. Spine 2019;44:915-26.  DOI
               14.      Lee MJ, Cizik AM, Hamilton D, Chapman JR. Predicting surgical site infection after spine surgery: a validated model using a
                   prospective surgical registry. Spine J 2014;14:2112-7.  DOI  PubMed
               15.      Scheer JK, Smith JS, Schwab F, et al; International Spine Study Group. Development of a preoperative predictive model for major
                   complications following adult spinal deformity surgery. J Neurosurg Spine 2017;26:736-43.  DOI  PubMed
   50   51   52   53   54   55   56   57   58   59   60