Page 117 - Read Online
P. 117

Ambati et al. Art Int Surg. 2025;5:53-64  https://dx.doi.org/10.20517/ais.2024.45    Page 63

                   the spinal cord and contusion injury: deep learning biomarker correlates of motor impairment in acute spinal cord injury. AJNR Am J
                   Neuroradiol 2019;40:737-44.  DOI  PubMed  PMC
               24.      Doerr SA, Weber-Levine C, Hersh AM, et al. Automated prediction of the thoracolumbar injury classification and severity score from
                   CT using a novel deep learning algorithm. Neurosurg Focus. 2022;52:E5.  DOI
               25.      Pang S, Pang C, Su Z, et al. DGMSNet: spine segmentation for MR image by a detection-guided mixed-supervised segmentation
                   network. Med Image Anal. 2022;75:102261.  DOI
               26.      Pang S, Pang C, Zhao L, et al. SpineParseNet: spine parsing for volumetric MR image by a two-stage segmentation framework with
                   semantic image representation. IEEE Trans Med Imaging. 2021;40:262-73.  DOI
               27.      Wesselink EO, Elliott JM, Coppieters MW, et al. Convolutional neural networks for the automatic segmentation of lumbar paraspinal
                   muscles in people with low back pain. Sci Rep. 2022;12:13485.  DOI  PubMed  PMC
               28.      Zhang B, Yu K, Ning Z, et al. Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: a multicenter
                   retrospective cohort study. Bone. 2020;140:115561.  DOI
               29.      Yabu A, Hoshino M, Tabuchi H, et al. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic
                   resonance images. Spine J. 2021;21:1652-8.  DOI
               30.      Jardon M, Tan ET, Chazen JL, et al. Deep-learning-reconstructed high-resolution 3D cervical spine MRI for foraminal stenosis
                   evaluation. Skeletal Radiol. 2023;52:725-32.  DOI
               31.      Trinh GM, Shao HC, Hsieh KL, et al. Detection of lumbar spondylolisthesis from X-ray images using deep learning network. J Clin
                   Med. 2022;11:5450.  DOI  PubMed  PMC
               32.      Grob A, Loibl M, Jamaludin A, et al. External validation of the deep learning system “SpineNet” for grading radiological features of
                   degeneration on MRIs of the lumbar spine. Eur Spine J. 2022;31:2137-48.  DOI  PubMed
               33.      Berlin C, Adomeit S, Grover P, et al. Novel AI-based algorithm for the automated computation of coronal parameters in adolescent
                   idiopathic scoliosis patients: a validation study on 100 preoperative full spine X-rays. Global Spine J. 2024;14:1728-37.  DOI  PubMed
                   PMC
               34.      Wu H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med
                   Image Anal. 2018;48:1-11.  DOI  PubMed
               35.      Weng CH, Wang CL, Huang YJ, et al. Artificial intelligence for automatic measurement of sagittal vertical axis using ResUNet
                   framework. J Clin Med. 2019;8:1826.  DOI  PubMed  PMC
               36.      Korez R, Putzier M, Vrtovec T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray
                   images: performance evaluation. Eur Spine J. 2020;29:2295-305.  DOI  PubMed
               37.      Galbusera F, Niemeyer F, Wilke HJ, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning
                   approach. Eur Spine J. 2019;28:951-60.  DOI
               38.      Berven S, Bisson E, Glassman S, et al. Optimizing surgical alignment: intraoperative assessment of alignment using zero radiation,
                   volumetric  intelligence.  2023.  Available  from:  https://assets-global.website-files.com/6296c202ecfe835c15f4e757/
                   649d0b69ba75cbd927e0717b_PROPRIO_WhitePaperLayout_R2.pdf. [Last accessed on 28 Dec 2024].
               39.      Abdelrahman A, Bangash OK, Bala A. Percutaneous posterior lumbar interbody fusion using optical topographic navigation: operative
                   technique. Interdiscip Neurosur. 2022;29:101561.  DOI
               40.      Comstock CP, Wait E. Novel machine vision image guidance system significantly reduces procedural time and radiation exposure
                   compared with 2-dimensional fluoroscopy-based guidance in pediatric deformity surgery. J Pediatr Orthop. 2023;43:e331-6.  DOI
                   PubMed  PMC
               41.      Lim KBL, Yeo ISX, Ng SWL, Pan WJ, Lee NKL. The machine-vision image guided surgery system reduces fluoroscopy time,
                   ionizing radiation and intraoperative blood loss in posterior spinal fusion for scoliosis. Eur Spine J. 2023;32:3987-95.  DOI  PubMed
               42.      Yeretsian T, Lai C, Guha D, Ramjist J, Yang VXD. Machine-vision image guided C4-C5 unilateral cervical pedicle screw insertion:
                   case report and review of literature. AME Case Rep. 2022;6:9.  DOI  PubMed  PMC
               43.      Malacon K, Fatemi P, Zygourakis CC. First reported use of machine vision image guided system for unstable thoracolumbar fusion:
                   technical case report. Interdiscip Neurosur. 2022;30:101641.  DOI
               44.      Eliahu K, Liounakos J, Wang MY. Applications for augmented and virtual reality in robot-assisted spine surgery. Curr Robot Rep.
                   2022;3:33-7.  DOI
               45.      Auloge P, Cazzato RL, Ramamurthy N, et al. Augmented reality and artificial intelligence-based navigation during percutaneous
                   vertebroplasty: a pilot randomised clinical trial. Eur Spine J. 2020;29:1580-9.  DOI
               46.      Burström G, Buerger C, Hoppenbrouwers J, et al. Machine learning for automated 3-dimensional segmentation of the spine and
                   suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine. 2019;31:147-54.
                   DOI
               47.      Elmi-Terander A, Burström G, Nachabé R, et al. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted
                   free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep. 2020;10:707.  DOI  PubMed  PMC
               48.      Charles YP, Cazzato RL, Nachabe R, Chatterjea A, Steib JP, Gangi A. Minimally invasive transforaminal lumbar interbody fusion
                   using augmented reality surgical navigation for percutaneous pedicle screw placement. Clin Spine Surg. 2021;34:E415-24.  DOI
                   PubMed
               49.      Zhang Y, Wan DH, Chen M, et al. Automated machine learning-based model for the prediction of delirium in patients after surgery for
                   degenerative spinal disease. CNS Neurosci Ther. 2023;29:282-95.  DOI  PubMed  PMC
   112   113   114   115   116   117   118   119   120   121   122