Page 116 - Read Online
P. 116

Page 62                                                             Ambati et al. Art Int Surg. 2025;5:53-64  https://dx.doi.org/10.20517/ais.2024.45

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Cornwall GB, Davis A, Walsh WR, Mobbs RJ, Vaccaro A. Innovation and new technologies in spine surgery, circa 2020: a fifty-year
                   review. Front Surg. 2020;7:575318.  DOI  PubMed  PMC
               2.       Kazemi N, Crew LK, Tredway TL. The future of spine surgery: new horizons in the treatment of spinal disorders. Surg Neurol Int.
                   2013;4:S15-21.  DOI  PubMed  PMC
               3.       Walker CT, Kakarla UK, Chang SW, Sonntag VKH. History and advances in spinal neurosurgery. J Neurosurg Spine. 2019;31:775-
                   85.  DOI  PubMed
               4.       Zahlan A, Ranjan RP, Hayes D. Artificial intelligence innovation in healthcare: literature review, exploratory analysis, and future
                   research. Technol Soc. 2023;74:102321.  DOI
               5.       Zhou S, Zhou F, Sun Y, et al. The application of artificial intelligence in spine surgery. Front Surg. 2022;9:885599.  DOI  PubMed
                   PMC
               6.       Suran M. New NIH Program for artificial intelligence in research. JAMA. 2022;328:1580.  DOI  PubMed
               7.       Clark P, Kim J, Aphinyanaphongs Y. Marketing and US Food and Drug Administration clearance of artificial intelligence and machine
                   learning enabled software in and as medical devices: a systematic review. JAMA Netw Open. 2023;6:e2321792.  DOI  PubMed  PMC
               8.       McNabb NK, Christensen EW, Rula EY, et al. Projected growth in FDA-approved artificial intelligence products given venture capital
                   funding. J Am Coll Radiol. 2024;21:617-23.  DOI
               9.       Hoy D, March L, Brooks P, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann
                   Rheum Dis. 2014;73:968-74.  DOI
               10.      Stewart Williams J, Ng N, Peltzer K, et al. risk factors and disability associated with low back pain in older adults in low- and middle-
                   income countries. Results from the WHO Study on Global AGEing and Adult Health (SAGE). PLoS One. 2015;10:e0127880.  DOI
                   PubMed  PMC
               11.      Missios S, Bekelis K. Hospitalization cost after spine surgery in the United States of America. J Clin Neurosci. 2015;22:1632-7.  DOI
                   PubMed
               12.      Parker SL, Chotai S, Devin CJ, et al. Bending the cost curve-establishing value in spine surgery. Neurosurgery. 2017;80:S61-9.  DOI
                   PubMed
               13.      Jiang F, Wilson JRF, Badhiwala JH, et al. Quality and safety improvement in spine surgery. Global Spine J. 2020;10:17S-28S.  DOI
                   PubMed  PMC
               14.      Walid MS, Robinson JS Jr. Economic impact of comorbidities in spine surgery. J Neurosurg Spine. 2011;14:318-21.  DOI  PubMed
               15.      Dangeti P. Statistics for machine learning. Packt Publishing Ltd; 2017. Available from: https://books.google.com/books?id=C-
                   dDDwAAQBAJ&printsec=frontcover&hl=zh-CN#v=onepage&q&f=false. [Last accessed on 28 Dec 2024].
               16.      Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. Available from: https://www.deeplearningbook.org/. [Last
                   accessed on 28 Dec 2024].
               17.      Chan AK, Wozny TA, Bisson EF, et al. Classifying patients operated for spondylolisthesis: a K-means clustering analysis of clinical
                   presentation phenotypes. Neurosurgery. 2021;89:1033-41.  DOI
               18.      Ames CP, Smith JS, Pellisé F, et al; European Spine Study Group, International Spine Study Group. Artificial intelligence based
                   hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification
                   scheme that predicts quality and value. Spine 2019;44:915-26.  DOI
               19.      Ames CP, Smith JS, Pellisé F, et al; European Spine Study Group, International Spine Study Group. Development of predictive models
                   for all individual questions of SRS-22R after adult spinal deformity surgery: a step toward individualized medicine. Eur Spine J
                   2019;28:1998-2011.  DOI
               20.      Gros C, De Leener B, Badji A, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with
                   convolutional neural networks. Neuroimage. 2019;184:901-15.  DOI  PubMed  PMC
               21.      Jamaludin A, Lootus M, Kadir T, et al; Genodisc Consortium. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of
                   reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is
                   comparable with an expert radiologist. Eur Spine J 2017;26:1374-83.  DOI
               22.      De Leener B, Cohen-Adad J, Kadoury S. Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling.
                   IEEE Trans Med Imaging. 2015;34:1705-18.  DOI  PubMed
               23.      McCoy DB, Dupont SM, Gros C, et al; TRACK-SCI Investigators. Convolutional neural network-based automated segmentation of
   111   112   113   114   115   116   117   118   119   120   121