Page 79 - Read Online
P. 79

Page 168                                                      Kimbowa et al. Art Int Surg 2024;4:149-69  https://dx.doi.org/10.20517/ais.2024.20

                   tremor motion. Proc SPIE 2016;9786:166-71.  DOI
               53.      Mwikirize C, Nosher JL, Hacihaliloglu I. Enhancement of needle tip and shaft from 2d ultrasound using signal transmission maps. In:
                   Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, editors. Medical image computing and computer-assisted intervention -
                   MICCAI 2016. Cham: Springer; 2016. pp. 362-9.  DOI
               54.      Mwikirize C, Nosher JL, Hacihaliloglu I. Learning needle tip localization from digital subtraction in 2D ultrasound. Int J Comput
                   Assist Radiol Surg 2019;14:1017-26.  DOI  PubMed
               55.      Beigi P, Rohling R, Salcudean SE, Ng GC. CASPER: computer-aided segmentation of imperceptible motion-a learning-based tracking
                   of an invisible needle in ultrasound. Int J Comput Assist Radiol Surg 2017;12:1857-66.  DOI  PubMed
               56.      Pourtaherian A, Scholten HJ, Kusters L, et al. Medical instrument detection in 3-dimensional ultrasound data volumes. IEEE Trans
                   Med Imaging 2017;36:1664-75.  DOI  PubMed
               57.      Ayvali E, Desai JP. Optical flow-based tracking of needles and needle-tip localization using circular hough transform in ultrasound
                   images. Ann Biomed Eng 2015;43:1828-40.  DOI  PubMed  PMC
               58.      Pourtaherian A, Zinger S, de With, PHN, Korsten HHM, Mihajlovic N. Benchmarking of state-of-the-art needle detection algorithms
                   in 3D ultrasound data volumes. Proc SPIE 2015;9415:577-84.  DOI
               59.      Beigi P, Rohling R, Salcudean SE, Ng GC. Spectral analysis of the tremor motion for needle detection in curvilinear ultrasound via
                   spatiotemporal linear sampling. Int J Comput Assist Radiol Surg 2016;11:1183-92.  DOI  PubMed
               60.      Mwikirize C, Nosher JL, Hacihaliloglu I. Local phase-based learning for needle detection and localization in 3D ultrasound. In:
                   Cardoso MJ, et al., editors. Computer assisted and robotic endoscopy and clinical image-based procedures. Cham: Springer; 2017. pp.
                   108-15.  DOI
               61.      Zhao Y, Cachard C, Liebgott H. Automatic needle detection and tracking in 3D ultrasound using an ROI-based RANSAC and Kalman
                   method. Ultrason Imaging 2013;35:283-306.  DOI  PubMed
               62.      Tang C, Xie G, Omisore OM, Xiong J, Xia Z. A real-time needle tracking algorithm with first-frame linear structure removing in 2D
                   ultrasound-guided prostate therapy. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO); 2019 Dec 6-8;
                   Dali, China. IEEE; 2020. pp. 1240-5.  DOI
               63.      Hacihaliloglu I, Beigi P, Ng G, Rohling RN, Salcudean S, Abolmaesumi P. Projection-based phase features for localization of a needle
                   tip in 2D curvilinear ultrasound. In: Navab N, Hornegger J, Wells WM, Frangi A, editors. Medical image computing and computer-
                   assisted intervention - MICCAI 2015. Cham: Springer; 2015. pp. 347-54.  DOI
               64.      Agarwal N, Yadav AK, Gupta A, Orlando MF. Real-time needle tip localization in 2D ultrasound images using kalman filter. In: 2019
                   IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM); 2019 Jul 8-12; Hong Kong, China. IEEE; 2019.
                   pp. 1008-12.  DOI
               65.      Mwikirize C, Nosher JL, Hacihaliloglu I. Single shot needle tip localization in 2D ultrasound. In: Shen D, et al., editors. Medical
                   image computing and computer assisted intervention - MICCAI 2019. Cham: Springer; 2019. pp. 637-45.  DOI
               66.      Mwikirize C, Kimbowa AB, Imanirakiza S, Katumba A, Nosher JL, Hacihaliloglu I. Time-aware deep neural networks for needle tip
                   localization in 2D ultrasound. Int J Comput Assist Radiol Surg 2021;16:819-27.  DOI  PubMed
               67.      Hatt CR, Ng G, Parthasarathy V. Enhanced needle localization in ultrasound using beam steering and learning-based segmentation.
                   Comput Med Imaging Graph 2015;41:46-54.  DOI  PubMed
               68.      Younes H, Voros S, Troccaz J. Automatic needle localization in 3D ultrasound images for brachytherapy. In: 2018 IEEE 15th
                   International Symposium on Biomedical Imaging (ISBI 2018); 2018 Apr 4-7; Washington, DC, USA. IEEE; 2018. pp. 1203-7.  DOI
               69.      Beigi P, Rohling R, Salcudean T, Lessoway VA, Ng GC. Detection of an invisible needle in ultrasound using a probabilistic SVM and
                   time-domain features. Ultrasonics 2017;78:18-22.  DOI  PubMed
               70.      Geraldes AA, Rocha TS. A neural network approach for flexible needle tracking in ultrasound images using Kalman filter. In: 5th
                   IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics; 2014 Aug 12-15; Sao Paulo, Brazil. IEEE;
                   2014. pp. 70-5.  DOI
               71.      Pourtaherian A, Ghazvinian Zanjani F, Zinger S, et al. Improving needle detection in 3d ultrasound using orthogonal-plane
                   convolutional networks. In: Descoteaux M, et al., editors. Medical image computing and computer-assisted intervention - MICCAI
                   2017. Cham: Springer; 2017. pp. 610-8.  DOI
               72.      Pourtaherian A. Robust needle detection and visualization for 3D ultrasound image-guided interventions. Available from: https://
                   research.tue.nl/en/publications/robust-needle-detection-and-visualization-for-3d-ultrasound-image. [Last accessed on 25 Jul 2024].
               73.      Arif M, Moelker A, van Walsum T. Automatic needle detection and real-time Bi-planar needle visualization during 3D ultrasound
                   scanning of the liver. Med Image Anal 2019;53:104-10.  DOI  PubMed
               74.      Lee JY, Islam M, Woh JR, et al. Ultrasound needle segmentation and trajectory prediction using excitation network. Int J Comput
                   Assist Radiol Surg 2020;15:437-43.  DOI  PubMed
               75.      Zhang Y, He X, Tian Z, et al. Multi-needle detection in 3d ultrasound images using unsupervised order-graph regularized sparse
                   dictionary learning. IEEE Trans Med Imaging 2020;39:2302-15.  DOI  PubMed  PMC
               76.      Gao J, Liu P, Liu GD, Zhang L. Robust needle localization and enhancement algorithm for ultrasound by deep learning and beam
                   steering methods. J Comput Sci Technol 2021;36:334-46.  DOI
               77.      Wijata A, Andrzejewski J, Pyciński B. An automatic biopsy needle detection and segmentation on ultrasound images using a
                   convolutional neural network. Ultrason Imaging 2021;43:262-72.  DOI  PubMed
               78.      Chen S, Lin Y, Li Z, Wang F, Cao Q. Automatic and accurate needle detection in 2D ultrasound during robot-assisted needle insertion
   74   75   76   77   78   79   80   81   82   83   84