Page 80 - Read Online
P. 80
Kimbowa et al. Art Int Surg 2024;4:149-69 https://dx.doi.org/10.20517/ais.2024.20 Page 169
process. Int J Comput Assist Radiol Surg 2022;17:295-303. DOI PubMed
79. Zhang Y, Tian Z, Lei Y, et al. Automatic multi-needle localization in ultrasound images using large margin mask RCNN for
ultrasound-guided prostate brachytherapy. Phys Med Biol 2020;65:205003. DOI PubMed
80. Zhang Y, Tian Z, Lei Y, et al. Multi-needle detection in ultrasound image using max-margin mask R-CNN. Proc SPIE
2021;11602:264-69. DOI
81. Andersén C, Rydén T, Thunberg P, Lagerlöf JH. Deep learning-based digitization of prostate brachytherapy needles in ultrasound
images. Med Phys 2020;47:6414-20. DOI PubMed PMC
82. Zhang Y, Lei Y, He X, et al. Ultrasound multi-needle detection using deep attention U-Net with TV regularizations. Proc SPIE
2021;11598:599-604. DOI
83. Mwikirize C, Nosher JL, Hacihaliloglu I. Convolution neural networks for real-time needle detection and localization in 2D
ultrasound. Int J Comput Assist Radiol Surg 2018;13:647-57. DOI PubMed
84. Wang R, Tan G, Liu X. Robust tip localization under continuous spatial and temporal constraints during 2D ultrasound-guided needle
puncture. Int J Comput Assist Radiol Surg 2023;18:2233-42. DOI PubMed
85. Rubin J, Chen A, Thodiyil AO, et al. Efficient video-based deep learning for ultrasound guided needle insertion. 2021. Available from:
https://openreview.net/forum?id=dVUHL5QhDhL. [Last accessed on 25 Jul 2024].
86. Wang R, Tan G, Liu X. TipDet: A multi-keyframe motion-aware framework for tip detection during ultrasound-guided interventions.
Comput Methods Programs Biomed 2024;247:108109. DOI PubMed
87. Che H, Qin J, Chen Y, et al. Improving needle tip tracking and detection in ultrasound-based navigation system using deep learning-
enabled approach. IEEE J Biomed Health Inform 2024;28:2930-42. DOI PubMed
88. Zade AAT, Aziz MJ, Majedi H, Mirbagheri A, Ahmadian A. Spatiotemporal analysis of speckle dynamics to track invisible needle in
ultrasound sequences using convolutional neural networks: a phantom study. Int J Comput Assist Radiol Surg 2023;18:1373-82. DOI
PubMed
89. Gillies DJ, Rodgers JR, Gyacskov I, et al. Deep learning segmentation of general interventional tools in two-dimensional ultrasound
images. Med Phys 2020;47:4956-70. DOI PubMed
90. Pourtaherian A, Mihajlovic N, Ghazvinian Zanjani F, et al. Localization of partially visible needles in 3D ultrasound using dilated
CNNs. In: 2018 IEEE International Ultrasonics Symposium (IUS); 2018 Oct 22-25; Kobe, Japan. IEEE; 2019. pp. 1-4. DOI
91. Yan W, Ding Q, Chen J, Yan K, Tang RSY, Cheng SS. Learning-based needle tip tracking in 2D ultrasound by fusing visual tracking
and motion prediction. Med Image Anal 2023;88:102847. DOI PubMed
92. Zhang Y, Harms J, Lei Y, et al. Weakly supervised multi-needle detection in 3D ultrasound images with bidirectional convolutional
sparse coding. Proc SPIE 2020;11319:229-36. DOI
93. Maier-Hein L, Reinke A, Godau P, et al. Metrics reloaded: recommendations for image analysis validation. Nat Methods 2024;21:195-
212. DOI PubMed
94. Reinke A, Tizabi MD, Baumgartner M, et al. Understanding metric-related pitfalls in image analysis validation. Nat Methods
2024;21:182-94. DOI PubMed PMC
95. Rodriguez-Molares A, Fatemi A, Lovstakken L, Torp H. Specular beamforming. IEEE Trans Ultrason Ferroelectr Freq Control
2017;64:1285-97. DOI PubMed
96. Cai Q, Hu J, Chen M, et al. Inertial measurement unit-assisted ultrasonic tracking system for ultrasound probe localization. IEEE Trans
Ultrason Ferroelectr Freq Control 2023;70:920-29. DOI PubMed

