Page 42 - Read Online
P. 42
Boutros et al. Art Int Surg 2022;2:213-23 https://dx.doi.org/10.20517/ais.2022.32 Page 223
from automated identification of gallbladder inflammation. Surg Endosc 2022;36:6832-40. DOI PubMed
22. Meireles OR, Rosman G, Altieri MS, et al; SAGES Video Annotation for AI Working Groups. SAGES consensus recommendations
on an annotation framework for surgical video. Surg Endosc 2021;35:4918-29. DOI PubMed
23. Ward TM, Fer DM, Ban Y, Rosman G, Meireles OR, Hashimoto DA. Challenges in surgical video annotation. Comput Assist Surg
(Abingdon) 2021;26:58-68. DOI PubMed
24. Athey S. Beyond prediction: using big data for policy problems. Science 2017;355:483-5. DOI PubMed
25. Fogel AL, Kvedar JC. Artificial intelligence powers digital medicine. NPJ Digit Med 2018;1:5. DOI PubMed PMC
26. Gordon L, Grantcharov T, Rudzicz F. Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg
2019;154:1064-5. DOI PubMed
27. Ghassemi M, Oakden-rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care.
Lancet Digital Health 2021;3:e745-50. DOI PubMed
28. Mazer L, Varban O, Montgomery JR, Awad MM, Schulman A. Video is better: why aren’t we using it? Surg Endosc 2022;36:1090-7.
DOI PubMed
29. Gibaud B, Forestier G, Feldmann C, et al. Toward a standard ontology of surgical process models. Int J Comput Assist Radiol Surg
2018;13:1397-408. DOI PubMed
30. Smeden M. A very short list of common pitfalls in research design, data analysis, and reporting. PRiMER 2022;6:26. DOI PubMed
PMC