Page 42 - Read Online
P. 42

Boutros et al. Art Int Surg 2022;2:213-23  https://dx.doi.org/10.20517/ais.2022.32                                                        Page 223

                   from automated identification of gallbladder inflammation. Surg Endosc 2022;36:6832-40.  DOI  PubMed
               22.      Meireles OR, Rosman G, Altieri MS, et al; SAGES Video Annotation for AI Working Groups. SAGES consensus recommendations
                   on an annotation framework for surgical video. Surg Endosc 2021;35:4918-29.  DOI  PubMed
               23.      Ward TM, Fer DM, Ban Y, Rosman G, Meireles OR, Hashimoto DA. Challenges in surgical video annotation. Comput Assist Surg
                   (Abingdon) 2021;26:58-68.  DOI  PubMed
               24.      Athey S. Beyond prediction: using big data for policy problems. Science 2017;355:483-5.  DOI  PubMed
               25.      Fogel AL, Kvedar JC. Artificial intelligence powers digital medicine. NPJ Digit Med 2018;1:5.  DOI  PubMed  PMC
               26.      Gordon L, Grantcharov T, Rudzicz F. Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg
                   2019;154:1064-5.  DOI  PubMed
               27.      Ghassemi M, Oakden-rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care.
                   Lancet Digital Health 2021;3:e745-50.  DOI  PubMed
               28.      Mazer L, Varban O, Montgomery JR, Awad MM, Schulman A. Video is better: why aren’t we using it? Surg Endosc 2022;36:1090-7.
                   DOI  PubMed
               29.      Gibaud B, Forestier G, Feldmann C, et al. Toward a standard ontology of surgical process models. Int J Comput Assist Radiol Surg
                   2018;13:1397-408.  DOI  PubMed
               30.      Smeden M. A very short list of common pitfalls in research design, data analysis, and reporting. PRiMER 2022;6:26.  DOI  PubMed
                   PMC
   37   38   39   40   41   42   43   44   45   46   47