Page 41 - Read Online
P. 41
Page 222 Boutros et al. Art Int Surg 2022;2:213-23 https://dx.doi.org/10.20517/ais.2022.32
Conflicts of interest
Daniel Hashimoto is a consultant for Johnson and Johnson Institute. He serves on the board of directors of
the Global Surgical AI Collaborative, an independent, non-profit organization that oversees and manages a
global data-sharing and analytics platform for surgical data. Jeffrey Marks is a consultant for US Endoscopy
and Boston Scientific. Christina Boutros, Vivek Singh, and Lee Ocuin have no relevant conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2022.
REFERENCES
1. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018;268:70-6. DOI
PubMed PMC
2. Maier-Hein L, Eisenmann M, Sarikaya D, et al. Surgical data science - from concepts toward clinical translation. Med Image Anal
2022;76:102306. DOI PubMed PMC
3. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical
applications, and limitations. Anesthesiology 2020;132:379-94. DOI PubMed PMC
4. Hashimoto DA, Ward TM, Meireles OR. The role of artificial intelligence in surgery. Adv Surg 2020;54:89-101. DOI PubMed
5. Alapatt D, Mascagni P, Vardazaryan A, et al. Temporally constrained neural networks (TCNN): a framework for semi-supervised
video semantic segmentation. Comput Vis Pattern Recognit 2021. DOI
6. Bektaş M, Zonderhuis BM, Marquering HA, Costa Pereira J, Burchell GL, van der Peet DL. Artificial intelligence in
hepatFIGopancreaticobiliary surgery: a systematic review. Art Int Surg 2022;2:132-43. DOI
7. Stam WT, Goedknegt LK, Ingwersen EW, Schoonmade LJ, Bruns ERJ, Daams F. The prediction of surgical complications using
artificial intelligence in patients undergoing major abdominal surgery: a systematic review. Surgery 2022;171:1014-21. DOI PubMed
8. Merath K, Hyer JM, Mehta R, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver,
pancreatic, and colorectal surgery. J Gastrointest Surg 2020; 24:1843-51. DOI PubMed
9. Borakati A, Banu Z, Raptis D, et al. New onset diabetes after partial pancreatectomy: development of a novel predictive model using
machine learning. HPB 2021;23:S814. DOI
10. Al-Haddad MA, Friedlin J, Kesterson J, et al. Natural language processing for the development of a clinical registry: a validation study
in intraductal papillary mucinous neoplasms. HPB 2010;12:688-95. DOI
11. Roch AM, Mehrabi S, Krishnan A, et al. Automated pancreatic cyst screening using natural language processing: a new tool in the
early detection of pancreatic cancer. HPB (Oxford) 2015;17:447-53. DOI PubMed PMC
12. Tunstall L, von Werra L, Wolf T. Natural language processing with transformers. Available from: https://www.amazon.com/Natural-
Language-Processing-Transformers-Revised/dp/1098136799 [Last accessed on 29 Dec 2022].
13. Payne TH, Alonso WD, Markiel JA, et al. Using voice to create inpatient progress notes: effects on note timeliness, quality, and
physician satisfaction. JAMIA Open 2018;1:218-26. DOI PubMed PMC
14. Ward TM, Mascagni P, Ban Y, et al. Computer vision in surgery. Surgery 2021;169:1253-1256. DOI PubMed
15. Kenngott HG, Wagner M, Gondan M, et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a
guidance system based on intraoperative CT imaging. Surg Endosc 2014;28:933-40. DOI PubMed
16. Haouchine N, Cotin S, Peterlik I, et al. Impact of soft tissue heterogeneity on augmented reality for liver surgery. IEEE Trans Vis
Comput Graph 2015;21:584-97. DOI PubMed
17. Giannone F, Felli E, Cherkaoui Z, Mascagni P, Pessaux P. Augmented reality and image-guided robotic liver surgery. Cancers
2021:13. DOI PubMed PMC
18. Mascagni P, Alapatt D, Urade T, et al. A computer vision platform to automatically locate critical events in surgical videos:
documenting safety in laparoscopic cholecystectomy. Ann Surg 2021;274:e93-5. DOI PubMed
19. Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of
safety in laparoscopic cholecystectomy using deep learning. Ann Surg 2022; 275:955-961. DOI PubMed
20. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify
surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9. DOI PubMed PMC
21. Ward TM, Hashimoto DA, Ban Y, Rosman G, Meireles OR. Artificial intelligence prediction of cholecystectomy operative course