Page 41 - Read Online
P. 41

Page 222                                                        Boutros et al. Art Int Surg 2022;2:213-23  https://dx.doi.org/10.20517/ais.2022.32

               Conflicts of interest
               Daniel Hashimoto is a consultant for Johnson and Johnson Institute. He serves on the board of directors of
               the Global Surgical AI Collaborative, an independent, non-profit organization that oversees and manages a
               global data-sharing and analytics platform for surgical data. Jeffrey Marks is a consultant for US Endoscopy
               and Boston Scientific. Christina Boutros, Vivek Singh, and Lee Ocuin have no relevant conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.       Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018;268:70-6.  DOI
                   PubMed  PMC
               2.       Maier-Hein L, Eisenmann M, Sarikaya D, et al. Surgical data science - from concepts toward clinical translation. Med Image Anal
                   2022;76:102306.  DOI  PubMed  PMC
               3.       Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical
                   applications, and limitations. Anesthesiology 2020;132:379-94.  DOI  PubMed  PMC
               4.       Hashimoto DA, Ward TM, Meireles OR. The role of artificial intelligence in surgery. Adv Surg 2020;54:89-101.  DOI  PubMed
               5.       Alapatt D, Mascagni P, Vardazaryan A, et al. Temporally constrained neural networks (TCNN): a framework for semi-supervised
                   video semantic segmentation. Comput Vis Pattern Recognit 2021.  DOI
               6.       Bektaş  M,  Zonderhuis  BM,  Marquering  HA,  Costa  Pereira  J,  Burchell  GL,  van  der  Peet  DL.  Artificial  intelligence  in
                   hepatFIGopancreaticobiliary surgery: a systematic review. Art Int Surg 2022;2:132-43.  DOI
               7.       Stam WT, Goedknegt LK, Ingwersen EW, Schoonmade LJ, Bruns ERJ, Daams F. The prediction of surgical complications using
                   artificial intelligence in patients undergoing major abdominal surgery: a systematic review. Surgery 2022;171:1014-21.  DOI  PubMed
               8.       Merath K, Hyer JM, Mehta R, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver,
                   pancreatic, and colorectal surgery. J Gastrointest Surg 2020; 24:1843-51.  DOI  PubMed
               9.       Borakati A, Banu Z, Raptis D, et al. New onset diabetes after partial pancreatectomy: development of a novel predictive model using
                   machine learning. HPB 2021;23:S814.  DOI
               10.      Al-Haddad MA, Friedlin J, Kesterson J, et al. Natural language processing for the development of a clinical registry: a validation study
                   in intraductal papillary mucinous neoplasms. HPB 2010;12:688-95.  DOI
               11.      Roch AM, Mehrabi S, Krishnan A, et al. Automated pancreatic cyst screening using natural language processing: a new tool in the
                   early detection of pancreatic cancer. HPB (Oxford) 2015;17:447-53.  DOI  PubMed  PMC
               12.      Tunstall L, von Werra L, Wolf T. Natural language processing with transformers. Available from: https://www.amazon.com/Natural-
                   Language-Processing-Transformers-Revised/dp/1098136799 [Last accessed on 29 Dec 2022].
               13.      Payne TH, Alonso WD, Markiel JA, et al. Using voice to create inpatient progress notes: effects on note timeliness, quality, and
                   physician satisfaction. JAMIA Open 2018;1:218-26.  DOI  PubMed  PMC
               14.      Ward TM, Mascagni P, Ban Y, et al. Computer vision in surgery. Surgery 2021;169:1253-1256.  DOI  PubMed
               15.      Kenngott HG, Wagner M, Gondan M, et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a
                   guidance system based on intraoperative CT imaging. Surg Endosc 2014;28:933-40.  DOI  PubMed
               16.      Haouchine N, Cotin S, Peterlik I, et al. Impact of soft tissue heterogeneity on augmented reality for liver surgery. IEEE Trans Vis
                   Comput Graph 2015;21:584-97.  DOI  PubMed
               17.      Giannone F, Felli E, Cherkaoui Z, Mascagni P, Pessaux P. Augmented reality and image-guided robotic liver surgery. Cancers
                   2021:13.  DOI  PubMed  PMC
               18.      Mascagni P, Alapatt D, Urade T, et al. A computer vision platform to automatically locate critical events in surgical videos:
                   documenting safety in laparoscopic cholecystectomy. Ann Surg 2021;274:e93-5.  DOI  PubMed
               19.      Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of
                   safety in laparoscopic cholecystectomy using deep learning. Ann Surg 2022; 275:955-961.  DOI  PubMed
               20.      Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify
                   surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9.  DOI  PubMed  PMC
               21.      Ward TM, Hashimoto DA, Ban Y, Rosman G, Meireles OR. Artificial intelligence prediction of cholecystectomy operative course
   36   37   38   39   40   41   42   43   44   45   46