Page 125 - Read Online
P. 125
Langan et al. Art Int Surg 2023;3:140-6 https://dx.doi.org/10.20517/ais.2023.13 Page 7
cystic neoplasms with ovarian-type stroma: implications for management and prognosis. Am J Surg Pathol 2015;39:179-87. DOI
PubMed PMC
8. Adsay NV, Basturk O, Bonnett M, et al. A proposal for a new and more practical grading scheme for pancreatic ductal
adenocarcinoma. Am J Surg Pathol 2005;29:724-33. DOI PubMed
9. Lim J, Allen PJ. The diagnosis and management of intraductal papillary mucinous neoplasms of the pancreas: has progress been made?
Updates Surg 2019;71:209-16. DOI
10. Aziz H, Acher AW, Krishna SG, Cloyd JM, Pawlik TM. Comparison of society guidelines for the management and surveillance of
pancreatic cysts: a review. JAMA Surg 2022;157:723-30. DOI PubMed
11. Heckler M, Michalski CW, Schaefle S, Kaiser J, Büchler MW, Hackert T. The Sendai and Fukuoka consensus criteria for the
management of branch duct IPMN-A meta-analysis on their accuracy. Pancreatology 2017;17:255-62. DOI PubMed
12. Lee JE, Choi SY, Min JH, et al. Determining malignant potential of intraductal papillary mucinous neoplasm of the pancreas: CT
versus MRI by using revised 2017 international consensus guidelines. Radiology 2019;293:134-43. DOI
13. European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic cystic neoplasms. Gut
2018;67:789-804. DOI PubMed PMC
14. Attiyeh MA, Fernández-Del Castillo C, Al Efishat M, et al. Development and validation of a multi-institutional preoperative
nomogram for predicting grade of dysplasia in Intraductal Papillary Mucinous Neoplasms (IPMNs) of the pancreas: a report from the
pancreatic surgery consortium. Ann Surg 2018;267:157-63. DOI PubMed PMC
15. Al Efishat M, Attiyeh MA, Eaton AA, et al. Progression patterns in the remnant pancreas after resection of non-invasive or micro-
invasive Intraductal Papillary Mucinous Neoplasms (IPMN). Ann Surg Oncol 2018;25:1752-9. DOI PubMed PMC
16. Rangwani S, Ardeshna DR, Rodgers B, et al. Application of artificial intelligence in the management of pancreatic cystic lesions.
Biomimetics 2022;7:79. DOI PubMed PMC
17. Marya NB, Powers PD, Chari ST, et al. Utilisation of artificial intelligence for the development of an EUS-convolutional neural
network model trained to enhance the diagnosis of autoimmune pancreatitis. Gut 2021;70:1335-44. DOI
18. Zhu J, Wang L, Chu Y, et al. A new descriptor for computer-aided diagnosis of EUS imaging to distinguish autoimmune pancreatitis
from chronic pancreatitis. Gastrointest Endosc 2015;82:831-836.e1. DOI
19. Săftoiu A, Vilmann P, Gorunescu F, et al; European EUS Elastography Multicentric Study Group. Efficacy of an artificial neural
network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clin Gastroenterol Hepatol
2012;10:84-90.e1. DOI
20. Tonozuka R, Itoi T, Nagata N, et al. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot
study. J Hepatobiliary Pancreat Sci 2021;28:95-104. DOI
21. Vilas-Boas F, Ribeiro T, Afonso J, et al. Deep learning for automatic differentiation of mucinous versus non-mucinous pancreatic
cystic lesions: a pilot study. Diagnostics 2022;12:2041. DOI PubMed PMC
22. Kooragayala K, Crudeli C, Kalola A, et al. Utilization of natural language processing software to identify worrisome pancreatic
lesions. Ann Surg Oncol 2022;29:8513-9. DOI