Page 104 - Read Online
P. 104

Xu et al. Art Int Surg 2023;3:48-63  https://dx.doi.org/10.20517/ais.2022.33         Page 62

                   PMC
               53.      Bhogadi Y, Brown E, Lee SY. Contrast-enhanced ultrasound in the diagnosis of infiltrative hepatocellular carcinoma: a report of three
                   cases. Radiol Case Rep 2021;16:448-56.  DOI  PubMed  PMC
               54.      Shen J, Wen J, Li C, et al. The prognostic value of microvascular invasion in early-intermediate stage hepatocelluar carcinoma: a
                   propensity score matching analysis. BMC Cancer 2018;18:278.  DOI  PubMed  PMC
               55.      Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and
                   deep learning. J Cancer Res Clin Oncol 2021;147:821-33.  DOI  PubMed  PMC
               56.      Zhang Y, Lv X, Qiu J, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion
                   in hepatocellular carcinoma. J Magn Reson Imaging 2021;54:134-43.  DOI
               57.      Liu F, Liu D, Wang K, et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for
                   very-early or early-stage hepatocellular carcinoma patients. Liver Cancer 2020;9:397-413.  DOI
               58.      Zhang L, Xia W, Yan ZP, et al. Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated
                   by transarterial chemoembolization plus sorafenib. Front Oncol 2020;10:593292.  DOI  PubMed  PMC
               59.      Gotra A, Sivakumaran L, Chartrand G, et al. Liver segmentation: indications, techniques and future directions. Insights Imaging
                   2017;8:377-92.  DOI  PubMed  PMC
               60.      Al-kababji A, Bensaali F, Dakua SP, Himeur Y. Automated liver tissues delineation techniques: a systematic survey on machine
                   learning current trends and future orientations. Eng Appl Artif Intell 2023;117:105532.  DOI
               61.      Liang F, Qian P, Su KH, et al. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided
                   radiotherapy: An intelligent, multi-level fusion approach. Artif Intell Med 2018;90:34-41.  DOI  PubMed
               62.      Gibson E, Giganti F, Hu Y, et al. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med
                   Imaging 2018;37:1822-34.  DOI  PubMed  PMC
               63.      Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 2022;19:151-72.  DOI
               64.      Muhammed A, D'Alessio A, Enica A, et al. Predictive biomarkers of response to immune checkpoint inhibitors in hepatocellular
                   carcinoma. Expert Rev Mol Diagn 2022;22:253-64.  DOI  PubMed
               65.      He Y, Lu M, Che J, Chu Q, Zhang P, Chen Y. Biomarkers and future perspectives for hepatocellular carcinoma immunotherapy. Front
                   Oncol 2021;11:716844.  DOI
               66.      Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular
                   carcinoma after resection: A multi-institutional study. EBioMedicine 2019;50:156-65.  DOI  PubMed  PMC
               67.      Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological
                   slides. Hepatology 2020;72:2000-13.  DOI
               68.      Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing
                   transjugular intrahepatic portosystemic shunts. Hepatology 2000;31:864-71.  DOI  PubMed
               69.      Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology
                   2001;33:464-70.  DOI
               70.      Bertsimas D, Kung J, Trichakis N, Wang Y, Hirose R, Vagefi PA. Development and validation of an optimized prediction of mortality
                   for candidates awaiting liver transplantation. Am J Transplant 2019;19:1109-18.  DOI  PubMed
               71.      Yu YD, Lee KS, Man Kim J, et al; Korean organ transplantation registry study group. Artificial intelligence for predicting survival
                   following deceased donor liver transplantation: Retrospective multi-center study. Int J Surg 2022;105:106838.  DOI  PubMed
               72.      Briceño J, Cruz-Ramírez M, Prieto M, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver
                   transplantation: results from a multicenter Spanish study. J Hepatol 2014;61:1020-8.  DOI  PubMed
               73.      Guijo-Rubio D, Briceño J, Gutiérrez PA, Ayllón MD, Ciria R, Hervás-Martínez C. Statistical methods versus machine learning
                   techniques for donor-recipient matching in liver transplantation. PLoS One 2021;16:e0252068.  DOI  PubMed  PMC
               74.      Peng J, Kang S, Ning Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in
                   hepatocellular carcinoma from CT imaging. Eur Radiol 2020;30:413-24.  DOI  PubMed  PMC
               75.      Morshid A, Elsayes KM, Khalaf AM, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter
                   arterial chemoembolization. Radiol Artif Intell 2019;1:e180021.  DOI  PubMed  PMC
               76.      Liu D, Liu F, Xie X, et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular
                   carcinoma by using artificial intelligence in contrast-enhanced ultrasound. Eur Radiol 2020;30:2365-76.  DOI  PubMed
               77.      Kant I. Critique of Pure Reason. Available from: https://play.google.com/store/books [Last accessed on 23 Mar 2023].
               78.      Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9.  DOI
                   PubMed  PMC
               79.      Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell 2020;180:688-702.e13.  DOI
               80.      Marwaha JS, Kvedar JC. Crossing the chasm from model performance to clinical impact: the need to improve implementation and
                   evaluation of AI. NPJ Digit Med 2022;5:25.  DOI  PubMed  PMC
               81.      Jiang L, Wu Z, Xu X, et al. Opportunities and challenges of artificial intelligence in the medical field: current application, emerging
                   problems, and problem-solving strategies. J Int Med Res 2021;49:3000605211000157.  DOI  PubMed  PMC
               82.      Chan KS, Zary N. Applications and challenges of implementing artificial intelligence in medical education: integrative review. JMIR
                   Med Educ 2019;5:e13930.  DOI  PubMed  PMC
               83.      FDA. Current good manufacturing practice (CGMP) regulations. Available from: https://www.fda.gov/drugs/pharmaceutical-quality-
   99   100   101   102   103   104   105   106   107   108   109