Page 104 - Read Online
P. 104
Xu et al. Art Int Surg 2023;3:48-63 https://dx.doi.org/10.20517/ais.2022.33 Page 62
PMC
53. Bhogadi Y, Brown E, Lee SY. Contrast-enhanced ultrasound in the diagnosis of infiltrative hepatocellular carcinoma: a report of three
cases. Radiol Case Rep 2021;16:448-56. DOI PubMed PMC
54. Shen J, Wen J, Li C, et al. The prognostic value of microvascular invasion in early-intermediate stage hepatocelluar carcinoma: a
propensity score matching analysis. BMC Cancer 2018;18:278. DOI PubMed PMC
55. Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and
deep learning. J Cancer Res Clin Oncol 2021;147:821-33. DOI PubMed PMC
56. Zhang Y, Lv X, Qiu J, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion
in hepatocellular carcinoma. J Magn Reson Imaging 2021;54:134-43. DOI
57. Liu F, Liu D, Wang K, et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for
very-early or early-stage hepatocellular carcinoma patients. Liver Cancer 2020;9:397-413. DOI
58. Zhang L, Xia W, Yan ZP, et al. Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated
by transarterial chemoembolization plus sorafenib. Front Oncol 2020;10:593292. DOI PubMed PMC
59. Gotra A, Sivakumaran L, Chartrand G, et al. Liver segmentation: indications, techniques and future directions. Insights Imaging
2017;8:377-92. DOI PubMed PMC
60. Al-kababji A, Bensaali F, Dakua SP, Himeur Y. Automated liver tissues delineation techniques: a systematic survey on machine
learning current trends and future orientations. Eng Appl Artif Intell 2023;117:105532. DOI
61. Liang F, Qian P, Su KH, et al. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided
radiotherapy: An intelligent, multi-level fusion approach. Artif Intell Med 2018;90:34-41. DOI PubMed
62. Gibson E, Giganti F, Hu Y, et al. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med
Imaging 2018;37:1822-34. DOI PubMed PMC
63. Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 2022;19:151-72. DOI
64. Muhammed A, D'Alessio A, Enica A, et al. Predictive biomarkers of response to immune checkpoint inhibitors in hepatocellular
carcinoma. Expert Rev Mol Diagn 2022;22:253-64. DOI PubMed
65. He Y, Lu M, Che J, Chu Q, Zhang P, Chen Y. Biomarkers and future perspectives for hepatocellular carcinoma immunotherapy. Front
Oncol 2021;11:716844. DOI
66. Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular
carcinoma after resection: A multi-institutional study. EBioMedicine 2019;50:156-65. DOI PubMed PMC
67. Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological
slides. Hepatology 2020;72:2000-13. DOI
68. Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing
transjugular intrahepatic portosystemic shunts. Hepatology 2000;31:864-71. DOI PubMed
69. Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology
2001;33:464-70. DOI
70. Bertsimas D, Kung J, Trichakis N, Wang Y, Hirose R, Vagefi PA. Development and validation of an optimized prediction of mortality
for candidates awaiting liver transplantation. Am J Transplant 2019;19:1109-18. DOI PubMed
71. Yu YD, Lee KS, Man Kim J, et al; Korean organ transplantation registry study group. Artificial intelligence for predicting survival
following deceased donor liver transplantation: Retrospective multi-center study. Int J Surg 2022;105:106838. DOI PubMed
72. Briceño J, Cruz-Ramírez M, Prieto M, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver
transplantation: results from a multicenter Spanish study. J Hepatol 2014;61:1020-8. DOI PubMed
73. Guijo-Rubio D, Briceño J, Gutiérrez PA, Ayllón MD, Ciria R, Hervás-Martínez C. Statistical methods versus machine learning
techniques for donor-recipient matching in liver transplantation. PLoS One 2021;16:e0252068. DOI PubMed PMC
74. Peng J, Kang S, Ning Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in
hepatocellular carcinoma from CT imaging. Eur Radiol 2020;30:413-24. DOI PubMed PMC
75. Morshid A, Elsayes KM, Khalaf AM, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter
arterial chemoembolization. Radiol Artif Intell 2019;1:e180021. DOI PubMed PMC
76. Liu D, Liu F, Xie X, et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular
carcinoma by using artificial intelligence in contrast-enhanced ultrasound. Eur Radiol 2020;30:2365-76. DOI PubMed
77. Kant I. Critique of Pure Reason. Available from: https://play.google.com/store/books [Last accessed on 23 Mar 2023].
78. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9. DOI
PubMed PMC
79. Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell 2020;180:688-702.e13. DOI
80. Marwaha JS, Kvedar JC. Crossing the chasm from model performance to clinical impact: the need to improve implementation and
evaluation of AI. NPJ Digit Med 2022;5:25. DOI PubMed PMC
81. Jiang L, Wu Z, Xu X, et al. Opportunities and challenges of artificial intelligence in the medical field: current application, emerging
problems, and problem-solving strategies. J Int Med Res 2021;49:3000605211000157. DOI PubMed PMC
82. Chan KS, Zary N. Applications and challenges of implementing artificial intelligence in medical education: integrative review. JMIR
Med Educ 2019;5:e13930. DOI PubMed PMC
83. FDA. Current good manufacturing practice (CGMP) regulations. Available from: https://www.fda.gov/drugs/pharmaceutical-quality-