Page 102 - Read Online
P. 102

Xu et al. Art Int Surg 2023;3:48-63  https://dx.doi.org/10.20517/ais.2022.33         Page 60

               Financial support and sponsorship
               None.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021;7:6.  DOI
               2.       Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol
                   2022;76:681-93.  DOI
               3.       Finn RS, Qin S, Ikeda M, et al; IMbrave150 investigators. atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N
                   Engl J Med 2020;382:1894-905.  DOI
               4.       Brar G, Greten TF, Graubard BI, et al. Hepatocellular carcinoma survival by etiology: a seer-medicare database analysis. Hepatol
                   Commun 2020;4:1541-51.  DOI  PubMed  PMC
               5.       Yang JD. Detect or not to detect very early-stage hepatocellular carcinoma? Clin Mol Hepatol 2019;25:335-43.  DOI
               6.       SD; British society of gastroenterology. guidelines for the diagnosis and treatment of hepatocellular carcinoma (HCC) in adults. Gut
                   2003;52 Suppl 3:iii1-8.  DOI
               7.       Best J, Sydor S, Bechmann LP, Canbay A. Evaluation and impact of different biomarkers for early detection of hepatocellular
                   carcinoma. HR 2020:2020.  DOI
               8.       Simmons O, Fetzer DT, Yokoo T, et al. Predictors of adequate ultrasound quality for hepatocellular carcinoma surveillance in patients
                   with cirrhosis. Aliment Pharmacol Ther 2017;45:169-77.  DOI  PubMed  PMC
               9.       Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with
                   cirrhosis. N Engl J Med 1996;334:693-9.  DOI  PubMed
               10.      Massad E, Chaib E. Liver tumors and liver transplantation. Elsevier; 2020. pp. 97-115.  DOI
               11.      Burak KW. Prognosis in the early stages of hepatocellular carcinoma: predicting outcomes and properly selecting patients for curative
                   options. Can J Gastroenterol 2011;25:482-4.  DOI  PubMed  PMC
               12.      Farinati F, Sergio A, Baldan A, et al. Early and very early hepatocellular carcinoma: when and how much do staging and choice of
                   treatment really matter? BMC Cancer 2009;9:33.  DOI  PubMed  PMC
               13.      Kim HY, Lampertico P, Nam JY, et al. An artificial intelligence model to predict hepatocellular carcinoma risk in Korean and
                   Caucasian patients with chronic hepatitis B. J Hepatol 2022;76:311-8.  DOI  PubMed
               14.      Bharti P, Mittal D, Ananthasivan R. Preliminary study of chronic liver classification on ultrasound images using an ensemble model.
                   Ultrason Imaging 2018;40:357-79.  DOI  PubMed
               15.      Schmauch B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning. Diagn Interv Imaging
                   2019;100:227-33.  DOI
               16.      Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic
                   patients with indeterminate liver nodules. Eur Radiol 2020;30:558-70.  DOI  PubMed
               17.      Jansen MJA, Kuijf HJ, Veldhuis WB, Wessels FJ, Viergever MA, Pluim JPW. Automatic classification of focal liver lesions based on
                   MRI and risk factors. PLoS One 2019;14:e0217053.  DOI  PubMed  PMC
               18.      Zhang F, Yang J, Nezami N, et al. Liver tissue classification using an auto-context-based deep neural network with a multi-phase
                   training framework. In: Bai W, Sanroma G, Wu G, Munsell BC, Zhan Y, Coupé P, editors. patch-based techniques in medical imaging.
                   cham: springer international publishing; 2018. pp.59-66.  DOI  PubMed  PMC
               19.      Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer.
                   NPJ Digit Med 2020;3:23.  DOI
               20.      Liao H, Long Y, Han R, et al. Deep learning-based classification and mutation prediction from histopathological images of
                   hepatocellular carcinoma. Clin Transl Med 2020;10:e102.  DOI  PubMed  PMC
               21.      Sun SW, Xu X, Liu QP, et al. LiSNet: An artificial intelligence -based tool for liver imaging staging of hepatocellular carcinoma
                   aggressiveness. Med Phys 2022;49:6903-13.  DOI  PubMed
   97   98   99   100   101   102   103   104   105   106   107