Page 103 - Read Online
P. 103

Page 61                              Xu et al. Art Int Surg 2023;3:48-63  https://dx.doi.org/10.20517/ais.2022.33

               22.      Noh B, Park YM, Kwon Y, et al. Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using
                   multi-center data. BMC Gastroenterol 2022;22:85.  DOI  PubMed  PMC
               23.      Simsek C, Can Guven D, Koray Sahin T, et al. Artificial intelligence method to predict overall survival of hepatocellular carcinoma.
                   Hepatol Forum 2021;2:64-8.  DOI  PubMed  PMC
               24.      Mähringer-Kunz A, Wagner F, Hahn F, et al. Predicting survival after transarterial chemoembolization for hepatocellular carcinoma
                   using a neural network: a pilot study. Liver Int 2020;40:694-703.  DOI  PubMed
               25.      Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep-learning on histological
                   slides. Journal of Hepatology 2020;73:S381.  DOI
               26.      Liang JD, Ping XO, Tseng YJ, Huang GT, Lai F, Yang PM. Recurrence predictive models for patients with hepatocellular carcinoma
                   after radiofrequency ablation using support vector machines with feature selection methods. Meth Pro 2014;117:425-34.  DOI
                   PubMed
               27.      Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Markets 2021;31:685-95.  DOI
               28.      Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: a brief primer. Behav Ther 2020;51:675-87.  DOI  PubMed  PMC
               29.      Ghahramani Z. Unsupervised learning. in: bousquet o, von luxburg u, rätsch g, editors. advanced lectures on machine learning. berlin:
                   springer berlin heidelberg; 2004. pp.72-112.  DOI
               30.      Sarker IH. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci
                   2021;2:420.  DOI  PubMed  PMC
               31.      Han SH, Kim KW, Kim S, Youn YC. Artificial neural network: understanding the basic concepts without mathematics. Dement
                   Neurocogn Disord 2018;17:83-9.  DOI  PubMed  PMC
               32.      Pai  A.  CNN  vs.  RNN  vs.  ANN  –  analyzing  3  types  of  neural  networks  in  deep  learning.  Available  from:  https://
                   www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/ [Last accessed on
                   23 Mar 2023].
               33.      Indolia S, Goswami AK, Mishra S, Asopa P. Conceptual understanding of convolutional neural network- a deep learning approach.
                   Procedia Computer Science 2018;132:679-88.  DOI
               34.      Marhon SA, Cameron CJF, Kremer SC. Recurrent neural networks. in: bianchini m, maggini m, jain lc, editors. handbook on neural
                   information processing. berlin: springer berlin heidelberg; 2013.p.29-65.  DOI
               35.      Savage N. Breaking into the black box of artificial intelligence. Nature 2022.  DOI  PubMed
               36.      Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. Radiographics 2017;37:2113-31.  DOI  PubMed
               37.      Azer SA. Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: a
                   systematic review. World J Gastrointest Oncol 2019;11:1218-30.  DOI  PubMed  PMC
               38.      Liu X, Song JL, Wang SH, Zhao JW, Chen YQ. Learning to diagnose cirrhosis with liver capsule guided ultrasound image
                   classification. Sensors 2017;17:149.  DOI  PubMed  PMC
               39.      Książek W, Abdar M, Acharya UR, Pławiak P. A novel machine learning approach for early detection of hepatocellular carcinoma
                   patients. Csri 2019;54:116-27.  DOI
               40.      Brehar R, Mitrea DA, Vancea F, et al. Comparison of deep-learning and conventional machine-learning methods for the automatic
                   recognition of the hepatocellular carcinoma areas from ultrasound images. Sensors 2020;20:3085.  DOI  PubMed  PMC
               41.      Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with
                   contrast enhanced ultrasound images. Clin Hemorheol Microcirc 2018;69:343-54.  DOI  PubMed
               42.      Yang Q, Wei J, Hao X, et al. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: a
                   multicentre study. EBioMedicine 2020;56:102777.  DOI  PubMed  PMC
               43.      Streba CT, Ionescu M, Gheonea DI, et al. Contrast-enhanced ultrasonography parameters in neural network diagnosis of liver tumors.
                   World J Gastroenterol 2012;18:4427-34.  DOI  PubMed  PMC
               44.      Hassan TM, Elmogy M, Sallam E. Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arab J
                   Sci Eng 2017;42:3127-40.  DOI
               45.      Shi W, Kuang S, Cao S, et al. Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: choice of
                   four-phase and three-phase CT imaging protocol. Abdom Radiol 2020;45:2688-97.  DOI  PubMed
               46.      Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic
                   contrast-enhanced ct: a preliminary study. Radiology 2018;286:887-96.  DOI  PubMed
               47.      Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network
                   classifier for multi-phasic MRI. Eur Radiol 2019;29:3338-47.  DOI  PubMed  PMC
               48.      Preis O, Blake MA, Scott JA. Neural network evaluation of PET scans of the liver: a potentially useful adjunct in clinical
                   interpretation. Radiology 2011;258:714-21.  DOI  PubMed
               49.      Tunissiolli NM, Castanhole-Nunes MMU, Biselli-Chicote PM, et al. Hepatocellular carcinoma: a comprehensive review of
                   biomarkers, clinical aspects, and therapy. Asian Pac J Cancer Prev 2017;18:863-72.  DOI  PubMed  PMC
               50.      Yeom SK, Lee CH, Cha SH, Park CM. Prediction of liver cirrhosis, using diagnostic imaging tools. World J Hepatol 2015;7:2069-79.
                   DOI  PubMed  PMC
               51.      association for the study of the liver. electronic address: easloffice@easloffice.eu, European association for the study of the liver.
                   EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2018;69:182-236.  DOI
               52.      Tanaka H. Current role of ultrasound in the diagnosis of hepatocellular carcinoma. J Med Ultrason 2020;47:239-55.  DOI  PubMed
   98   99   100   101   102   103   104   105   106   107   108