Page 9 - Read Online
P. 9

Gillion et al. Rare Dis Orphan Drugs J 2023;2:11  https://dx.doi.org/10.20517/rdodj.2022.23  Page 5 of 5

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Roscioni SS, Lambers Heerspink HJ, de Zeeuw D. Microalbuminuria: target for renoprotective therapy PRO. Kidney Int 2014;86:40-9.
                   PubMed
               2.       Hemmelgarn BR, Manns BJ, Lloyd A, et al; Alberta Kidney Disease Network. Relation between kidney function, proteinuria, and
                   adverse outcomes. JAMA 2010;303:423-9.  DOI
               3.       Quinlan C. CUBN variants uncouple proteinuria from kidney function. Nat Rev Nephrol 2020;16:135-6.  DOI  PubMed
               4.       Bedin M, Boyer O, Servais A, et al. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J
                   Clin Invest 2020;130:335-44.  DOI  PubMed  PMC
               5.       Knoers N, Antignac C, Bergmann C, et al. Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical
                   practice. Nephrol Dial Transplant 2022;37:239-54.  DOI  PubMed  PMC
               6.       Amsellem S, Gburek J, Hamard G, et al. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol;
                   2010. 1859-67  DOI  PubMed  PMC
               7.       Gräsbeck R. Imerslund-Gräsbeck syndrome (selective vitamin B(12) malabsorption with proteinuria). Orphanet J Rare Dis 2006;1:17.
                   DOI
               8.       Aminoff M, Carter JE, Chadwick RB, et al. Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause
                   hereditary megaloblastic anaemia 1. Nat Genet 1999;21:309-13.  DOI
               9.       Ahluwalia TS, Schulz CA, Waage J, et al. A novel rare CUBN variant and three additional genes identified in Europeans with and
                   without diabetes: results from an exome-wide association study of albuminuria. Diabetologia 2019;62:292-305.  DOI  PubMed  PMC
               10.      Böger CA, Chen MH, Tin A, et al; CKDGen Consortium. CUBN is a gene locus for albuminuria. J Am Soc Nephrol 2011;22:555-70.
                   DOI
               11.      Haas ME, Aragam KG, Emdin CA, et al; International Consortium for Blood Pressure. Genetic association of albuminuria with
                   cardiometabolic disease and blood pressure. Am J Hum Genet 2018;103:461-73.  DOI  PubMed  PMC
               12.      Zanetti D, Rao A, Gustafsson S, Assimes TL, Montgomery SB, Ingelsson E. Identification of 22 novel loci associated with urinary
                   biomarkers of albumin, sodium, and potassium excretion. Kidney Int 2019;95:1197-208.  PubMed  PMC
               13.      Teumer A, Tin A, Sorice R, et al; DCCT/EDIC. Genome-wide association studies identify genetic loci associated with albuminuria in
                   diabetes. Diabetes 2016;65:803-17.  DOI
               14.      Domingo-Gallego A, Pybus M, Madariaga L, et al. Clinical and genetic characterization of a cohort of proteinuric patients with
                   biallelic CUBN variants. Nephrol Dial Transplant 2022;37:1906-15.  DOI
               15.      Cicek N, Alpay H, Guven S, et al. Clinical and genetic characterization of children with cubilin variants. Pediatr Nephrol
                   2023;38:1381-5.  DOI
               16.      Yang J, Xu Y, Deng L, et al. CUBN gene mutations may cause focal segmental glomerulosclerosis (FSGS) in children. BMC Nephrol
                   2022;23:15.  DOI  PubMed  PMC
               17.      Gan C, Zhou X, Chen D, et al. Novel pathogenic variants in CUBN uncouple proteinuria from renal function. J Transl Med
                   2022;20:480.  DOI  PubMed  PMC
   4   5   6   7   8   9   10   11   12   13   14