Page 77 - Read Online
P. 77

Klugmann et al. Rare Dis Orphan Drugs J 2023;2:8  https://dx.doi.org/10.20517/rdodj.2023.05  Page 9 of 9

               Conflicts of interest
               Klugmann M was employed by the company Boehringer Ingelheim Pharma GmbH & Co. KG. All authors
               declared that there is no conflict of interest.


               Ethical approval and consent to participate
               This study was approved by the UNSW Sydney Human Research Ethics Advisory Panel D.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2023.

               REFERENCES
               1.       Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet 2014;5:158.  DOI  PubMed  PMC
               2.       Ognjenović J, Simonović M. Human aminoacyl-tRNA synthetases in diseases of the nervous system. RNA Biol 2018;15:623-34.  DOI
                   PubMed  PMC
               3.       Antonellis A, Green ED. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 2008;9:87-107.
                   DOI  PubMed
               4.       Taft RJ, Vanderver A, Leventer RJ, et al. Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and
                   leg spasticity. Am J Hum Genet 2013;92:774-80.  DOI  PubMed  PMC
               5.       Wolf NI, Toro C, Kister I, et al. DARS-associated leukoencephalopathy can mimic a steroid-responsive neuroinflammatory disorder.
                   Neurology 2015;84:226-30.  DOI  PubMed  PMC
               6.       Muthiah A, Housley GD, Klugmann M, Fröhlich D. The leukodystrophies HBSL and LBSL-correlates and distinctions. Front Cell
                   Neurosci 2020;14:626610.  DOI  PubMed  PMC
               7.       Scheper GC, van der Klok T, van Andel RJ, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy
                   with brain stem and spinal cord involvement and lactate elevation. Nat Genet 2007;39:534-9.  DOI  PubMed
               8.       Dogan SA, Pujol C, Maiti P, et al. Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain
                   deficiency in the heart. Cell Metab 2014;19:458-69.  DOI  PubMed
               9.       Fröhlich D, Suchowerska AK, Spencer ZH, et al. In vivo characterization of the aspartyl-tRNA synthetase DARS: homing in on the
                   leukodystrophy HBSL. Neurobiol Dis 2017;97:24-35.  DOI  PubMed
               10.      Fröhlich D, Mendes MI, Kueh AJ, et al. A hypomorphic Dars1D367Y model recapitulates key aspects of the leukodystrophy HBSL.
                   Front Cell Neurosci 2020;14:625879.  DOI  PubMed  PMC
               11.      Klugmann M, Kalotay E, Delerue F, et al. Developmental delay and late onset HBSL pathology in hypomorphic Dars1M256L mice.
                   Neurochem Res 2022;47:1972-84.  DOI  PubMed  PMC
               12.      Fröhlich D, Suchowerska AK, Voss C, et al. Expression pattern of the aspartyl-tRNA synthetase DARS in the human brain. Front Mol
                   Neurosci 2018;11:81.  DOI  PubMed  PMC
               13.      Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal versus polyclonal antibodies: distinguishing characteristics,
                   applications, and information resources. ILAR J 2005;46:258-68.  DOI  PubMed
               14.      Howat WJ, Lewis A, Jones P, et al. Antibody validation of immunohistochemistry for biomarker discovery: recommendations of a
                   consortium of academic and pharmaceutical based histopathology researchers. Methods 2014;70:34-8.  DOI  PubMed  PMC
   72   73   74   75   76   77   78   79   80   81   82