Page 36 - Read Online
P. 36

Zierke et al. Rare Dis Orphan Drugs J 2023;2:10  https://dx.doi.org/10.20517/rdodj.2022.17  Page 9 of 10

                   Pancreatology 2022;22:1099-111.  DOI
               32.      El Jellas K, Dušátková P, Haldorsen IS, et al. Two new mutations in the CEL gene causing diabetes and hereditary pancreatitis: how to
                   correctly identify MODY8 cases. J Clin Endocrinol Metab 2022;107:e1455-e1466.  DOI  PubMed  PMC
               33.      Witt H, Beer S, Rosendahl J, et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet
                   2013;45:1216-20.  DOI  PubMed  PMC
               34.      Moore PC, Cortez JT, Chamberlain CE, et al. Elastase 3B mutation links to familial pancreatitis with diabetes and pancreatic
                   adenocarcinoma. J Clin Invest 2019;129:4676-81.  DOI  PubMed  PMC
               35.      SARLES H, SARLES JC, MURATORE R, GUIEN C. Chronic inflammatory sclerosis of the pancreas-an autonomous pancreatic
                   disease? Am J Dig Dis 1961;6:688-98.  DOI  PubMed
               36.      Yoshida K, Toki F, Takeuchi T, Watanabe S, Shiratori K, Hayashi N. Chronic pancreatitis caused by an autoimmune abnormality.
                   Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci 1995;40:1561-8.  DOI  PubMed
               37.      Schneider A, Michaely H, Weiss C, et al. Prevalence and incidence of autoimmune pancreatitis in the population living in the
                   southwest of Germany. Digestion 2017;96:187-98.  DOI
               38.      Kanno A, Masamune A, Okazaki K, et al; Research Committee of Intractable Diseases of the Pancreas. Nationwide epidemiological
                   survey of autoimmune pancreatitis in Japan in 2011. Pancreas 2015;44:535-9.  DOI
               39.      Kamisawa T, Egawa N, Inokuma S, et al. Pancreatic endocrine and exocrine function and salivary gland function in autoimmune
                   pancreatitis before and after steroid therapy. Pancreas 2003;27:235-8.  DOI
               40.      Kamisawa T, Chari ST, Giday SA, et al. Clinical profile of autoimmune pancreatitis and its histological subtypes: an international
                   multicenter survey. Pancreas 2011;40:809-14.  DOI
               41.      Sandrasegaran K, Menias CO. Imaging in autoimmune pancreatitis and immunoglobulin g4-related disease of the abdomen.
                   Gastroenterol Clin North Am 2018;47:603-19.  DOI  PubMed
               42.      Hart PA, Kamisawa T, Brugge WR, et al. Long-term outcomes of autoimmune pancreatitis: a multicentre, international analysis. Gut
                   2013;62:1771-6.  DOI  PubMed  PMC
               43.      John DS, Aschenbach J, Krüger B, et al. Deficiency of cathepsin C ameliorates severity of acute pancreatitis by reduction of neutrophil
                   elastase activation and cleavage of E-cadherin. J Biol Chem 2019;294:697-707.  DOI  PubMed  PMC
               44.      Ito T, Nakamura T, Fujimori N, et al. Characteristics of pancreatic diabetes in patients with autoimmune pancreatitis. J Dig Dis
                   2011;12:210-6.  DOI
               45.      Zamboni G, Lüttges J, Capelli P, et al. Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: a
                   study on 53 resection specimens and 9 biopsy specimens. Virchows Arch 2004;445:552-63.  DOI
               46.      Shinagare S, Shinagare AB, Deshpande V. Autoimmune pancreatitis: a guide for the histopathologist. Semin Diagn Pathol
                   2012;29:197-204.  DOI  PubMed
               47.      Ikeura T, Manfredi R, Zamboni G, et al. Application of international consensus diagnostic criteria to an Italian series of autoimmune
                   pancreatitis. United European Gastroenterol J 2013;1:276-84.  DOI  PubMed  PMC
               48.      Löhr JM, Faissner R, Koczan D, et al. Autoantibodies against the exocrine pancreas in autoimmune pancreatitis: gene and protein
                   expression profiling and immunoassays identify pancreatic enzymes as a major target of the inflammatory process. Am J Gastroenterol
                   2010;105:2060-71.  DOI  PubMed  PMC
               49.      Frulloni L, Lunardi C, Simone R, et al. Identification of a novel antibody associated with autoimmune pancreatitis. N Engl J Med
                   2009;361:2135-42.  DOI
               50.      Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, cell biology, and pathophysiology of pancreatitis.
                   Gastroenterology 2019;156:1951-1968.e1.  DOI  PubMed  PMC
               51.      Halangk W, Lerch MM, Brandt-Nedelev B, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute
                   pancreatitis. J Clin Invest 2000;106:773-81.  DOI  PubMed  PMC
               52.      Saluja A, Hashimoto S, Saluja M, Powers RE, Meldolesi J, Steer ML. Subcellular redistribution of lysosomal enzymes during
                   caerulein-induced pancreatitis. Am J Physiol 1987;253:G508-16.  DOI  PubMed
               53.      Ohmuraya M, Yamamura K. Roles of serine protease inhibitor Kazal type 1 (SPINK1) in pancreatic diseases. Exp Anim 2011;60:433-
                   44.  DOI  PubMed
               54.      Wartmann T, Mayerle J, Kähne T, et al. Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity
                   of pancreatitis in mice. Gastroenterology 2010;138:726-37.  DOI  PubMed  PMC
               55.      Aghdassi AA, John DS, Sendler M, et al. Cathepsin D regulates cathepsin B activation and disease severity predominantly in
                   inflammatory cells during experimental pancreatitis. J Biol Chem 2018;293:1018-29.  DOI  PubMed  PMC
               56.      Gukovsky I, Gukovskaya AS, Blinman TA, Zaninovic V, Pandol SJ. Early NF-kappaB activation is associated with hormone-induced
                   pancreatitis. Am J Physiol 1998;275:G1402-14.  DOI  PubMed
               57.      Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases
                   severity of pancreatitis in mice. Gastroenterology 2018;154:704-718.e10.  DOI  PubMed  PMC
               58.      Gukovskaya AS, Vaquero E, Zaninovic V, et al. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine
                   experimental acute pancreatitis. Gastroenterology 2002;122:974-84.  DOI
               59.      Abdulla A, Awla D, Thorlacius H, Regnér S. Role of neutrophils in the activation of trypsinogen in severe acute pancreatitis. J Leukoc
                   Biol 2011;90:975-82.  DOI  PubMed
               60.      Awla D, Abdulla A, Syk I, Jeppsson B, Regnér S, Thorlacius H. Neutrophil-derived matrix metalloproteinase-9 is a potent activator of
   31   32   33   34   35   36   37   38   39   40   41