Page 35 - Read Online
P. 35
Page 8 of 10 Zierke et al. Rare Dis Orphan Drugs J 2023;2:10 https://dx.doi.org/10.20517/rdodj.2022.17
REFERENCES
1. Peery AF, Crockett SD, Murphy CC, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States:
update 2018. Gastroenterology 2019;156:254-272.e11. DOI PubMed PMC
2. Wiese ML, Urban S, von Rheinbaben S, et al. Identification of early predictors for infected necrosis in acute pancreatitis. BMC
Gastroenterol 2022;22:405. DOI PubMed PMC
3. Weiss FU, Laemmerhirt F, Lerch MM. Acute pancreatitis: genetic risk and clinical implications. J Clin Med 2021;10:190. DOI
PubMed PMC
4. Gorry MC, Gabbaizedeh D, Furey W, et al. Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic
pancreatitis. Gastroenterology 1997;113:1063-8. DOI
5. Whitcomb DC. Genetic risk factors for pancreatic disorders. Gastroenterology 2013;144:1292-302. DOI PubMed PMC
6. Girodon E, Rebours V, Chen JM, et al. Clinical interpretation of PRSS1 variants in patients with pancreatitis. Clin Res Hepatol
Gastroenterol 2021;45:101497. DOI
7. Comfort MW, Steinberg AG. Pedigree of a family with hereditary chronic relapsing pancreatitis. Gastroenterology 1952;21:54-63.
DOI PubMed
8. Whitcomb DC, Gorry MC, Preston RA, et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat
Genet 1996;14:141-5. DOI
9. Coté GA, Yadav D, Slivka A, et al; North American Pancreatitis Study Group. Alcohol and smoking as risk factors in an epidemiology
study of patients with chronic pancreatitis. Clin Gastroenterol Hepatol 2011;9:266-73; quiz e27. DOI PubMed PMC
10. Rebours V, Boutron-Ruault MC, Schnee M, et al. The natural history of hereditary pancreatitis: a national series. Gut 2009;58:97-103.
DOI
11. Howes N, Lerch MM, Greenhalf W, et al; European Registry of Hereditary Pancreatitis and Pancreatic Cancer (EUROPAC). Clinical
and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol 2004;2:252-61. DOI
12. Sultan M, Werlin S, Venkatasubramani N. Genetic prevalence and characteristics in children with recurrent pancreatitis. J Pediatr
Gastroenterol Nutr 2012;54:645-50. DOI PubMed
13. Sahin-Tóth M. Human cationic trypsinogen. Role of Asn-21 in zymogen activation and implications in hereditary pancreatitis. J Biol
Chem 2000;275:22750-5. DOI PubMed
14. Teich N, Le Maréchal C, Kukor Z, et al. Interaction between trypsinogen isoforms in genetically determined pancreatitis: mutation
E79K in cationic trypsin (PRSS1) causes increased transactivation of anionic trypsinogen (PRSS2). Hum Mutat 2004;23:22-31. DOI
15. Kereszturi E, Szmola R, Kukor Z, et al. Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen:
a novel disease mechanism. Hum Mutat 2009;30:575-82. DOI PubMed PMC
16. Witt H, Luck W, Hennies HC, et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with
chronic pancreatitis. Nat Genet 2000;25:213-6. DOI
17. Schneider A. Serine protease inhibitor kazal type 1 mutations and pancreatitis. Clin Lab Med 2005;25:61-78. DOI PubMed
18. Király O, Boulling A, Witt H, et al. Signal peptide variants that impair secretion of pancreatic secretory trypsin inhibitor (SPINK1)
cause autosomal dominant hereditary pancreatitis. Hum Mutat 2007;28:469-76. DOI PubMed PMC
19. Szmola R, Sahin-Tóth M. Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: identity with Rinderknecht’s
enzyme Y. Proc Natl Acad Sci USA 2007;104:11227-32. DOI PubMed PMC
20. Rosendahl J, Witt H, Szmola R, et al. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic
pancreatitis. Nat Genet 2008;40:78-82. DOI PubMed PMC
21. Anderson MP, Rich DP, Gregory RJ, Smith AE, Welsh MJ. Generation of cAMP-activated chloride currents by expression of CFTR.
Science 1991;251:679-82. DOI PubMed
22. Quinton PM. Chloride impermeability in cystic fibrosis. Nature 1983;301:421-2. DOI PubMed
23. Reddy MM, Quinton PM. Selective activation of cystic fibrosis transmembrane conductance regulator CL- and HCO - conductances.
3
JOP 2001;2(4 Suppl):212-8. PubMed
24. Stutts MJ, Canessa CM, Olsen JC, et al. CFTR as a cAMP-dependent regulator of sodium channels. Science 1995;269:847-50. DOI
25. Durno C, Corey M, Zielenski J, Tullis E, Tsui LC, Durie P. Genotype and phenotype correlations in patients with cystic fibrosis and
pancreatitis. Gastroenterology 2002;123:1857-64. DOI PubMed
26. Ooi CY, Dorfman R, Cipolli M, et al. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis.
Gastroenterology 2011;140:153-61. DOI
27. Behrendorff N, Floetenmeyer M, Schwiening C, Thorn P. Protons released during pancreatic acinar cell secretion acidify the lumen
and contribute to pancreatitis in mice. Gastroenterology 2010;139:1711-20, 1720.e1. DOI PubMed
28. Pallagi P, Venglovecz V, Rakonczay Z Jr, et al. Trypsin reduces pancreatic ductal bicarbonate secretion by inhibiting CFTR Cl
channels and luminal anion exchangers. Gastroenterology 2011;141:2228-2239.e6. DOI
29. Hui DY, Howles PN. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and
atherosclerosis. J Lipid Res 2002;43:2017-30. DOI PubMed
30. Fjeld K, Weiss FU, Lasher D, et al. A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to
chronic pancreatitis. Nat Genet 2015;47:518-22. DOI PubMed PMC
31. Fjeld K, Gravdal A, Brekke RS, et al. The genetic risk factor CEL-HYB1 causes proteotoxicity and chronic pancreatitis in mice.