Page 322 - Read Online
P. 322

Page 16 of 18        Deng et al. Microstructures 2023;3:2023044  https://dx.doi.org/10.20517/microstructures.2023.42

               10.      Lin JC, Tong P, Zhou XJ, et al. Giant negative thermal expansion covering room temperature in nanocrystalline GaN Mn . Appl Phys
                                                                                               x
                                                                                                  3
                   Lett 2015;107:131902.  DOI
               11.      Sun Y, Wang C, Wen Y, Zhu K, Zhao J. Lattice contraction and magnetic and electronic transport properties of Mn Zn GexN. Appl
                                                                                                 1-x
                                                                                              3
                   Phys Lett 2007;91:231913.  DOI
               12.      Sun Y, Wang C, Wen Y, et al. Negative thermal expansion and magnetic transition in anti-perovskite structured Mn Zn Sn N
                                                                                                   3  1-x  x
                   compounds: rapid communications of the American ceramic society. J Am Ceram Soc 2010;93:2178-81.  DOI
               13.      Ding L, Wang C, Sun Y, Colin CV, Chu L. Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn Ni Cu N
                                                                                                   3  1-x  x
                   compounds. J Appl Phys 2015;117:213915.  DOI
               14.      Chu L, Wang C, Yan J, et al. Magnetic transition, lattice variation and electronic transport properties of Ag-doped Mn Ni Ag N
                                                                                                   3
                                                                                                        x
                                                                                                     1-x
                   antiperovskite compounds. Scr Mater 2012;67:173-6.  DOI
               15.      Deng S, Sun Y, Wu H, et al. Invar-like behavior of antiperovskite Mn Ni N compounds. Chem Mater 2015;27:2495-501.  DOI
                                                                3+x
                                                                   1-x
               16.      Song X, Sun Z, Huang Q, et al. Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv Mater 2011;23:4690-4.
                   DOI
               17.      Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M, Shamoto S. Local lattice distortion in the giant negative thermal expansion
                   material Mn Cu Ge N. Phys Rev Lett 2008;101:205901.  DOI  PubMed
                           3  1-x  x
               18.      Iikubo S, Kodama K, Takenaka K, Takagi H, Shamoto S. Magnetovolume effect in Mn Cu Ge N related to the magnetic structure:
                                                                            3  1-x  x
                   neutron powder diffraction measurements. Phys Rev B 2008;77:020409.  DOI
               19.      Tong P, Louca D, King G, Llobet A, Lin JC, Sun YP. Magnetic transition broadening and local lattice distortion in the negative
                   thermal expansion antiperovskite Cu Sn NMn . Appl Phys Lett 2013;102:041908.  DOI
                                                  3
                                              x
                                           1-x
               20.      Wang C, Chu L, Yao Q, et al. Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn  (Zn, M)x N(M =
                                                                                              3
                   Ag, Ge). Phys Rev B 2012;85:220103.  DOI
               21.      Deng S, Sun Y, Wu H, et al. Phase separation and zero thermal expansion in antiperovskite Mn Zn  Mn  N  : an in situ neutron
                                                                                  3  0.77  0.19  0.94
                   diffraction investigation. Scr Mater 2018;146:18-21.  DOI
               22.     Shi K, Sun Y, Colin CV, et al. Investigation of the spin-lattice coupling in Mn Ga Sn N antiperovskites. Phys Rev B 2018;97:054110.
                                                                     3  1-x  x
                   DOI
               23.      Lukashev P, Sabirianov RF, Belashchenko K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys Rev B
                   2008;78:184414. DOI
               24.      Qu BY, Pan BC. Nature of the negative thermal expansion in antiperovskite compound Mn ZnN. J Appl Phys 2010;108:113920.  DOI
                                                                              3
               25.      Mochizuki M, Kobayashi M, Okabe R, Yamamoto D. Spin model for nontrivial types of magnetic order in inverse-perovskite
                   antiferromagnets. Phys Rev B 2018;97:060401.  DOI
               26.      Kamishima K, Goto T, Nakagawa H, et al. Giant magnetoresistance in the intermetallic compound Mn GaC. Phys Rev B
                                                                                       3
                   2000;63:024426. DOI
               27.      Deng S, Fischer G, Uhlarz M, et al. Controlling chiral spin states of a triangular-lattice magnet by cooling in a magnetic field. Adv
                   Funct Mater 2019;29:1900947.  DOI
               28.      Gurung G, Shao DF, Paudel TR, Tsymbal EY. Anomalous HALL conductivity of noncollinear magnetic antiperovskites. Phys
                   Rev Mater 2019;3:044409.  DOI
               29.     Samathrakis I, Zhang H. Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn GaN. Phys Rev B  2020;101:214423.
                                                                                   3
                   DOI
               30.      Zhao K, Hajiri T, Chen H, Miki R, Asano H, Gegenwart P. Anomalous Hall effect in the noncollinear antiferromagnetic antiperovskite
                   Mn Ni Cu N. Phys Rev B 2019;100:045109.  DOI
                     3  1-x  x
               31.      Rani GM, Wu CM, Motora KG, Umapathi R. Waste-to-energy: utilization of recycled waste materials to fabricate
                   triboelectric nanogenerator for mechanical energy harvesting. J Clean Prod 2022;363:132532.  DOI
               32.      Gokana MR, Wu CM, Motora KG, Qi JY, Yen WT. Effects of patterned electrode on near infrared light-triggered cesium tungsten
                   bronze/ poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J Power Sources
                   2022;536:231524. DOI
               33.      Zemen J, Gercsi Z, Sandeman KG. Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based
                   antiperovskite nitrides. Phys Rev B 2017;96:024451.  DOI
               34.      Boldrin D, Mihai AP, Zou B, et al. Giant Piezomagnetism in Mn NiN. ACS Appl Mater Interfaces 2018;10:18863-8.  DOI
                                                             3
               35.      Shi K, Sun Y, Yan J, et al. Baromagnetic effect in antiperovskite Mn Ga  N   by neutron powder diffraction analysis. Adv Mater
                                                                 3  0.95  0.94
                   2016;28:3761-7.  DOI
               36.      Tohei T, Wada H, Kanomata T. Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn GaC. J Appl
                                                                                                 3
                   Phys 2003;94:1800-2.  DOI
               37.      Yu M, Lewis LH, Moodenbaugh AR. Assessment of the magnetic entropy change in the metallic antiperovskite Mn GaC  (δ = 0,
                                                                                             3
                                                                                                 1-δ
                   0.22). J Magn Magn Mater 2006;299:317-26.  DOI
               38.     Tohei T, Wada H, Kanomata T. Large magnetocaloric effect of Mn Co GaC. J Magn Magn Mater 2004;272-76:E585-6.  DOI
                                                              3-x  x
               39.     Yan J, Sun Y, Wu H, et al. Phase transitions and magnetocaloric effect in Mn Cu 0.89 N 0.96 . Acta Mater 2014;74:58-65.  DOI
                                                                     3
               40.      Matsunami D, Fujita A, Takenaka K, Kano M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in
                   Mn GaN. Nat Mater 2015;14:73-8.  DOI  PubMed
                     3
               41.      Boldrin  D,  Mendive-tapia  E,  Zemen  J,  et  al.  Multisite  exchange-enhanced  barocaloric  response  in  Mn NiN.  Phys  Rev  X
                                                                                             3
                   2018;8:041035.  DOI
               42.     Chi EO, Kim WS, Hur NH. Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn . Solid State
                                                                                              3
                   Commun 2001;120:307-10.  DOI
   317   318   319   320   321   322   323   324   325   326   327