Page 323 - Read Online
P. 323

Deng et al. Microstructures 2023;3:2023044  https://dx.doi.org/10.20517/microstructures.2023.42  Page 17 of 18

               43.      Sun Y, Wang C, Chu L, Wen Y, Nie M, Liu F. Low temperature coefficient of resistivity induced by magnetic transition and lattice
                   contraction in Mn NiN compound. Scr Mater 2010;62:686-9.  DOI
                               3
               44.      Takenaka K, Ozawa A, Shibayama T, Kaneko N, Oe T, Urano C. Extremely low temperature coefficient of resistance in antiperovskite
                   Mn Ag Cu N. Appl Phys Lett 2011;98:022103.  DOI
                     3  1-x  x
               45.      Lin JC, Wang BS, Tong P, et al. Tunable temperature coefficient of resistivity in C- and Co-doped CuNMn . Scr Mater 2011;65:452-
                                                                                         3
                   5. DOI
               46.      Deng S, Sun Y, Wang L, et al. Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite
                   Mn Ni N. Appl Phys Lett 2016;108:041908.  DOI
                         1-x
                     3+x
               47.      He T, Huang Q, Ramirez AP, et al. Superconductivity in the non-oxide perovskite MgCNi . Nature 2001;411:54-6.  DOI
                                                                             3
               48.      Rosner H, Weht R, Johannes MD, Pickett WE, Tosatti E. Superconductivity near ferromagnetism in MgCNi . Phys Rev Lett
                                                                                               3
                   2002;88:027001.  DOI  PubMed
               49.      Wu M, Isshiki H, Chen T, Higo T, Nakatsuji S, Otani Y. Magneto-optical Kerr effect in a non-collinear antiferromagnet Mn Ge. Appl
                                                                                                    3
                   Phys Lett 2020;116:132408.  DOI
               50.      Balk AL, Sung NH, Thomas SM, et al. Comparing the anomalous Hall effect and the magneto-optical Kerr effect through
                   antiferromagnetic phase transitions in Mn Sn. Appl Phys Lett 2019;114:032401.  DOI
                                              3
               51.      Feng W, Guo GY, Zhou J, Yao Y, Niu Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn X (X = Rh, Ir,
                                                                                               3
                   Pt). Phys Rev B 2015;92:144426.  DOI
               52.      Kamishima K, Bartashevich M, Goto T, Kikuchi M, Kanomata T. Magnetic behavior of Mn GaC under high magnetic field and high
                                                                               3
                   pressure. J Phys Soc Jpn 1998;67:1748-54.  DOI
               53.      Fruchart D, Bertaut EF, Sayetat F, Nasr Eddine M, Fruchart R, Sénateur JP. Structure magnetique de Mn GaC. Solid State
                                                                                          3
                   Commun 1970;8:91-9.  DOI
               54.      Fruchart D, Bertaut EF. Magnetic studies of the metallic perovskite-type compounds of manganese. J Phys Soc Jpn 1978;44:781-91.
                   DOI
               55.      Çakιr Ö, Acet M. Reversibility in the inverse magnetocaloric effect in Mn GaC studied by direct adiabatic temperature-change
                                                                      3
                   measurements. Appl Phys Lett 2012;100:202404.  DOI
               56.      Sénateur JP, Boursier D, L'héritier P, Lorthioir G, Fruchart ME, Le Caer G. Etude par spectrometrie mössbauer de ZnMn  et de
                                                                                                     3
                   la transition antiferro-ferromagnetique de GaMn C dopes au fer 57. Mater Res Bull 1974;9:603-14.  DOI
                                                  3
               57.      Deng S, Sun Y, Wang L, et al. Frustrated triangular magnetic structures of Mn ZnN: applications in thermal expansion. J Phys Chem C
                                                                     3
                   2015;119:24983-90.  DOI
               58.      Fruchart D, Bertaut EF, Madar R, Fruchart R. Diffraction neutronique de Mn ZnN. J Phys Colloques 1971;32:C1-876.  DOI
                                                                    3
               59.      Wu M, Wang C, Sun Y, et al. Magnetic structure and lattice contraction in Mn NiN. J Appl Phys 2013;114:123902.  DOI
                                                                     3
               60.      Hua L, Wang L, Chen LF. First-principles investigation of Ge doping effects on the structural, electronic and magnetic properties in
                   antiperovskite Mn CuN. J Phys Condens Matter 2010;22:206003.  DOI
                               3
               61.      Han H, Sun Y, Deng S, et al. Effect of thermal stress on non-collinear antiferromagnetic phase transitions in antiperovskite Mn GaN
                                                                                                      3
                   compounds with Mn SbN inclusions. Ceramics Int 2022;48:15200-6.  DOI
                                3
               62.      Sun Y, Hu P, Shi K, et al. Giant zero-field cooling exchange-bias-like behavior in antiperovskite Mn Co  Mn  N compound. Phys
                                                                                     3  0.61  0.39
                   Rev Mater 2019;3:024409.  DOI
               63.      Salvador JR, Guo F, Hogan T, Kanatzidis MG. Zero thermal expansion in YbGaGe due to an electronic valence transition. Nature
                   2003;425:702-5.  DOI
               64.      Mary TA, Evans JSO, Vogt T, Sleight AW. Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW O . Science 1996;272:90-2.
                                                                                       2
                                                                                         8
                   DOI
               65.     Song Y, Shi N, Deng S, Xing X, Chen J. Negative thermal expansion in magnetic materials. Prog Mater Sci 2021;121:100835.  DOI
               66.      Chen J, Hu L, Deng J, Xing X. Negative thermal expansion in functional materials: controllable thermal expansion by chemical
                   modifications. Chem Soc Rev 2015;44:3522-67.  DOI  PubMed
               67.      Gava V, Martinotto AL, Perottoni CA. First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW O . Phys
                                                                                                     8
                                                                                                    2
                   Rev Lett 2012;109:195503.  DOI  PubMed
               68.      Li CW, Tang X, Muñoz JA, et al. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF .
                                                                                                         3
                   Phys Rev Lett 2011;107:195504.  DOI
               69.      Long YW, Hayashi N, Saito T, Azuma M, Muranaka S, Shimakawa Y. Temperature-induced A-B intersite charge transfer in an A-
                   site-ordered LaCu Fe O  perovskite. Nature 2009;458:60-3.  DOI
                               3
                                  12
                                 4
               70.      Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V. Full-field implementation of a perfect eavesdropper on a
                   quantum cryptography system. Nat Commun 2011;2:349.  DOI  PubMed
               71.      Chen J, Fan L, Ren Y, et al. Unusual transformation from strong negative to positive thermal expansion in PbTiO -BiFeO  perovskite.
                                                                                                  3
                                                                                            3
                   Phys Rev Lett 2013;110:115901.  DOI
               72.      Huang R, Liu Y, Fan W, et al. Giant negative thermal expansion in NaZn -type La(Fe, Si, Co)  compounds. J Am Chem Soc
                                                                      13             13
                   2013;135:11469-72.  DOI
               73.      Qi TF, Korneta OB, Parkin S, De Long LE, Schlottmann P, Cao G. Negative volume thermal expansion via orbital and magnetic
                   orders in Ca Ru Cr O  (0 < x < 0.13). Phys Rev Lett 2010;105:177203.  DOI
                           2
                             1-x
                                  4
                                x
   318   319   320   321   322   323   324   325   326   327   328