Page 305 - Read Online
P. 305

Page 22 of 23        Zhou et al. Microstructures 2023;3:2023043  https://dx.doi.org/10.20517/microstructures.2023.38

               55.      Gordon LM, Cohen MJ, MacRenaris KW, Pasteris JD, Seda T, Joester D. Dental materials. Amorphous intergranular phases control
                   the properties of rodent tooth enamel. Science 2015;347:746-50.  DOI  PubMed
               56.      Fontaine A, Zavgorodniy A, Liu H, Zheng R, Swain M, Cairney J. Atomic-scale compositional mapping reveals Mg-rich amorphous
                   calcium phosphate in human dental enamel. Sci Adv 2016;2:e1601145.  DOI  PubMed  PMC
               57.      Langelier B, Wang X, Grandfield K. Atomic scale chemical tomography of human bone. Sci Rep 2017;7:39958.  DOI  PubMed  PMC
               58.      Sundell G, Dahlin C, Andersson M, Thuvander M. The bone-implant interface of dental implants in humans on the atomic scale. Acta
                   Biomater 2017;48:445-50.  DOI  PubMed
               59.      Prosa TJ, Keeney SK, Kelly TF. Atom probe tomography analysis of poly(3-alkylthiophene)s. J Microsc 2010;237:155-67.  DOI
                   PubMed
               60.      Rusitzka KAK, Stephenson LT, Szczepaniak A, et al. A near atomic-scale view at the composition of amyloid-beta fibrils by atom
                   probe tomography. Sci Rep 2018;8:17615.  DOI  PubMed  PMC
               61.      Perea DE, Liu J, Bartrand J, et al. Atom probe tomographic mapping directly reveals the atomic distribution of phosphorus in resin
                   embedded ferritin. Sci Rep 2016;6:22321.  DOI  PubMed  PMC
               62.      Sundell G, Hulander M, Pihl A, Andersson M. Atom probe tomography for 3D structural and chemical analysis of individual proteins.
                   Small 2019;15:e1900316.  DOI  PubMed
               63.      Narayan K, Prosa TJ, Fu J, Kelly TF, Subramaniam S. Chemical mapping of mammalian cells by atom probe tomography. J Struct
                   Biol 2012;178:98-107.  DOI  PubMed  PMC
               64.      Martin ML, Connolly MJ, DelRio FW, Slifka AJ. Hydrogen embrittlement in ferritic steels. Appl Phys Rev 2020;7;041301.  DOI
                   PubMed PMC
               65.      Robertson IM, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood. Metall Mater Trans B 2015;46:1085-103.  DOI
               66.      Pressouyre G. Trap theory of hydrogen embrittlement. Acta Metall 1980;28:895-911.  DOI
               67.      Bhadeshia HKDH. Prevention of hydrogen embrittlement in steels. ISIJ Int 2016;56:24-36.  DOI
               68.      Chang Y, Breen AJ, Tarzimoghadam Z, et al. Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic
                   scale. Acta Mater 2018;150:273-80.  DOI
               69.      Chang Y, Zhang S, Liebscher CH, et al. Could face-centered cubic titanium in cold-rolled commercially-pure titanium only be a Ti-
                   hydride? Scr Mater 2020;178:39-43.  DOI
               70.      Haley D, Merzlikin S, Choi P, Raabe D. Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an
                   electrolytic route. Int J Hydrog Energy 2014;39:12221-9.  DOI
               71.      Breen AJ, Stephenson LT, Sun B, et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta
                   Mater 2020;188:108-20.  DOI
               72.      Sundell G, Thuvander M, Andrén HO. Hydrogen analysis in APT: methods to control adsorption and dissociation of  H .
                                                                                                         2
                   Ultramicroscopy 2013;132:285-9.  DOI  PubMed
               73.      Takahashi J, Kawakami K, Kobayashi Y, Tarui T. The first direct observation of hydrogen trapping sites in TiC precipitation-
                   hardening steel through atom probe tomography. Scr Mater 2010;63:261-4.  DOI
               74.      Zhu X, Li W, Zhao H, Wang L, Jin X. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching &
                   partitioning (Q&P) treated steel. Int J Hydrog Energy 2014;39:13031-40.  DOI
               75.      Meier MS, Jones ME, Felfer PJ, Moody MP, Haley D. Extending estimating hydrogen content in atom probe tomography experiments
                   where H  molecule formation occurs. Microsc Microanal 2022;28:1231-44.  DOI
                         2
               76.      Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom
                   probe tomography. Scr Mater 2012;67:213-6.  DOI
               77.      Takahashi J, Kawakami K, Kobayashi Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta
                   Mater 2018;153:193-204.  DOI
               78.      Gangloff RP, Somerday BP. Gaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterisation
                   and effects on particular alloy classes. Elsevier; 2012. Available from: https://shop.elsevier.com/books/gaseous-hydrogen-
                   embrittlement-of-materials-in-energy-technologies/gangloff/978-1-84569-677-1 [Last accessed on 31 Oct 2023].
               79.      Zhao H, Chakraborty P, Ponge D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022;602:437-41.
                   DOI  PubMed  PMC
               80.      Schwarz TM, Weikum EM, Meng K, et al. Field evaporation and atom probe tomography of pure water tips. Sci Rep 2020;10:20271.
                   DOI  PubMed  PMC
               81.      Schwarz TM, Dietrich CA, Ott J, et al. 3D sub-nanometer analysis of glucose in an aqueous solution by cryo-atom probe tomography.
                   Sci Rep 2021;11:11607.  DOI  PubMed  PMC
               82.      Devaraj A, Gu M, Colby R, et al. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery
                   cathodes. Nat Commun 2015;6:8014.  DOI  PubMed  PMC
               83.      Pfeiffer B, Maier J, Arlt J, Nowak C. In Situ atom probe deintercalation of lithium-manganese-oxide. Microsc Microanal 2017;23:314-
                   20.  DOI  PubMed
               84.      Greiwe GH, Balogh Z, Schmitz G. Atom probe tomography of lithium-doped network glasses. Ultramicroscopy 2014;141:51-5.  DOI
                   PubMed
               85.      Kim SH, Antonov S, Zhou X, et al. Atom probe analysis of electrode materials for Li-ion batteries: challenges and ways forward. J
                   Mater Chem A Mater 2022;10:4926-35.  DOI  PubMed  PMC
   300   301   302   303   304   305   306   307   308   309   310