Page 163 - Read Online
P. 163

Wang et al. Microstructures 2023;3:2023036  https://dx.doi.org/10.20517/microstructures.2023.27   Page 11 of 12

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Rauch EF, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P. Automated nanocrystal orientation and phase mapping in the
                   transmission electron microscope on the basis of precession electron diffraction. Z Kristallogr 2010;225:103-9.  DOI
               2.       Kobler A, Kübel C. Towards 3D crystal orientation reconstruction using automated crystal orientation mapping transmission electron
                   microscopy (ACOM-TEM). Beilstein J Nanotech 2018;9:602-7.  DOI  PubMed  PMC
               3.       Rauch E, Véron M. Automated crystal orientation and phase mapping in TEM. Mater Charact 2014;98:1-9.  DOI
               4.       Zhao D, Patel A, Barbosa A, et al. A reference-area-free strain mapping method using precession electron diffraction data.
                   Ultramicroscopy 2023;247:113700.  DOI
               5.       Ozdol VB, Gammer C, Jin XG, et al. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl
                   Phys Lett 2015;106:253107.  DOI
               6.       Rouviere J, Béché A, Martin Y, Denneulin T, Cooper D. Improved strain precision with high spatial resolution using nanobeam
                   precession electron diffraction. Appl Phys Lett 2013;103:241913.  DOI
               7.       Yadav D, Zhao D, Baldwin JK, Devaraj A, Demkowicz MJ, Xie KY. Persistence of crystal orientations across sub-micron-scale
                   “super-grains” in self-organized Cu-W nanocomposites. Scr Mater 2021;194:113677.  DOI
               8.       Kobler A, Kübel C. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM. Ultramicroscopy
                   2017;173:84-94.  DOI  PubMed
               9.       Mompiou F, Legros M, Boé A, Coulombier M, Raskin J, Pardoen T. Inter- and intragranular plasticity mechanisms in ultrafine-grained
                   Al thin films: an in situ TEM study. Acta Materialia 2013;61:205-16.  DOI
               10.      Kobler A, Kashiwar A, Hahn H, Kübel C. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic
                   deformation of nanocrystalline metals. Ultramicroscopy 2013;128:68-81.  DOI  PubMed
               11.      Rottmann PF, Hemker KJ. Experimental observations of twin formation during thermal annealing of nanocrystalline copper films
                   using orientation mapping. Scr Mater 2017;141:76-9.  DOI
               12.      Mompiou F, Legros M. Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small
                   grained Al thin films. Scr Mater 2015;99:5-8.  DOI
               13.      Ma X, Zhao D, Yadav S, Sagapuram D, Xie KY. Grain-subdivision-dominated microstructure evolution in shear bands at high rates.
                   Mater Res Lett 2020;8:328-34.  DOI
               14.      Xiang S, Ma L, Yang B, et al. Tuning the deformation mechanisms of boron carbide via silicon doping. Sci Adv 2019;5:eaay0352.
                   DOI  PubMed  PMC
               15.      Dong J, Umale T, Young B, Karaman I, Xie KY. Structure and substructure characterization of solution-treated Ni 50.3 Ti 29.7 Hf  high-
                                                                                                     20
                   temperature shape memory alloy. Scr Mater 2022;219:114888.  DOI
               16.      Hansen M. Crystallographic variant mapping using precession electron diffraction data. Microstructures 2023;3:2023029.  DOI
               17.      Portillo J, Rauch EF, Nicolopoulos S, Gemmi M, Bultreys D. Precession electron diffraction assisted orientation mapping in the
                   transmission electron microscope. Mater Sci Forum 2010;644:1-7.  DOI
               18.      Wu G, Zaefferer S. Advances in TEM orientation microscopy by combination of dark-field conical scanning and improved image
                   matching. Ultramicroscopy 2009;109:1317-25.  DOI  PubMed
               19.     Williams DB, Carter CB . Transmission electron microscopy: basics, diffraction, imaging, and spectrometry. Berlin: Springer; 2009.
               20.      Bergh T, Johnstone DN, Crout P, et al. Nanocrystal segmentation in scanning precession electron diffraction data. J Microsc
                   2020;279:158-67.  DOI
               21.      Folastre N, Cao J, Oney G, et al. Adaptative Diffraction image registration for 4D-STEM to optimize ACOM pattern matching.
                   Avaliable from: https://arxiv.org/abs/2305.02124 [Last accessed on 5 Sep 2023].
               22.      Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI
                   Signal Process Sys 2004;38:35-44.  DOI
               23.      Pizer SM, Amburn EP, Austin JD, et al. Adaptive histogram equalization and its variations. Comput Vis Grap Image Process
                   1987;39:355-68.  DOI
   158   159   160   161   162   163   164   165   166   167   168