Page 135 - Read Online
P. 135

Lee et al. Microstructures 2023;3:2023021  https://dx.doi.org/10.20517/microstructures.2023.08  Page 17 of 19

               35.      Bhunia S, Deo KA, Gaharwar AK. 2D covalent organic frameworks for biomedical applications. Adv Funct Mater 2020;30:2002046.
                   DOI
               36.      Chedid G, Yassin A. Recent trends in covalent and metal organic frameworks for biomedical applications. Nanomaterials 2018;8:916.
                   DOI  PubMed  PMC
               37.      Feng L, Qian C, Zhao Y. Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic
                   applications. ACS Mater Lett 2020;2:1074-92.  DOI
               38.      Ekimov A, Efros A, Onushchenko A. Quantum size effect in semiconductor microcrystals. Solid State Commun 1985;56:921-4.  DOI
               39.      Davis ME. Ordered porous materials for emerging applications. Nature 2002;417:813-21.  DOI  PubMed
               40.      Kianfar E. Synthesis and characterization of AlPO /ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ J Appl Chem
                                                     4
                   2018;91:1711-20.  DOI
               41.      Yin T, Meng X, Jin L, Yang C, Liu N, Shi L. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment.
                   Microporous Mesoporous Mater 2020;305:110327.  DOI
               42.      Campanile A, Liguori B, Ferone C, Caputo D, Aprea P. Zeolite-based monoliths for water softening by ion exchange/precipitation
                   process. Sci Rep 2022;12:3686.  DOI  PubMed  PMC
               43.      Wang S, Yu J, Zhao P, Guo S, Han S. One-step synthesis of water-soluble CdS quantum dots for silver-ion detection. ACS Omega
                   2021;6:7139-46.  DOI  PubMed  PMC
               44.      Herron N, Wang Y, Eddy MM, et al. Structure and optical properties of cadmium sulfide superclusters in zeolite hosts. J Am Chem Soc
                   1989;111:530-40.  DOI
               45.      Moller K, Bein T, Herron N, Mahler W, Wang Y. Encapsulation of lead sulfide molecular clusters into solid matrixes. Structural
                   analysis with X-ray absorption spectroscopy. Inorg Chem 1989;28:2914-9.  DOI
               46.      Jeong NC, Kim HS, Yoon KB. New insights into CdS quantum dots in zeolite-Y. J Phys Chem C 2007;111:10298-312.  DOI
               47.      Yin X, Zhang C, Guo Y, Yang Y, Xing Y, Que W. PbS QD-based photodetectors: future-oriented near-infrared detection technology. J
                   Mater Chem C 2021;9:417-38.  DOI
               48.      Zheng S, Chen J, Johansson EMJ, Zhang X. PbS colloidal quantum dot inks for infrared solar cells. iScience 2020;23:101753.  DOI
                   PubMed  PMC
               49.      Kim HS, Lee MH, Jeong NC, Lee SM, Rhee BK, Yoon KB. Very high third-order nonlinear optical activities of intrazeolite PbS
                   quantum dots. J Am Chem Soc 2006;128:15070-1.  DOI  PubMed
               50.      Kim HS, Yoon KB. Increase of third-order nonlinear optical activity of PbS quantum dots in zeolite Y by increasing cation size. J Am
                   Chem Soc 2012;134:2539-42.  DOI
               51.      Liu Y, Li Y, Hu X, et al. Ligands for CsPbBr  perovskite quantum dots: the stronger the better? Chem Eng J 2023;453:139904.  DOI
                                                3
               52.      Sun J, Rabouw FT, Yang X, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX  (X = Cl, Br, and I) Zeolite-Y
                                                                                     3
                   composite phosphors for potential backlight display application. Adv Funct Mater 2017;27:1704371.  DOI
               53.      Wang HC, Lin SY, Tang AC, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr  perovskite quantum-dot
                                                                                         3
                   nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed 2016;55:7924-9.
                   DOI
                                                                          8+
               54.      Kim JY, Shim KI, Han JW, Joo J, Heo NH, Seff K. Quantum dots of [Na Cs PbBr ] , water stable in Zeolite X, luminesce sharply in
                                                                   4  6  4
                   the green. Adv Mater 2020;32:e2001868.  DOI  PubMed
               55.      Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science
                   2005;310:1166-70.  DOI  PubMed
               56.      Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 2013;42:548-68.  DOI  PubMed
               57.      Wang H, Yang Y, Yuan X, et al. Structure-performance correlation guided applications of covalent organic frameworks. Mater Today
                   2022;53:106-33.  DOI
               58.      Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev 2020;120:8814-933.  DOI
                                                                                                 3+
                                                                                              2+
               59.      Binu PJ, Ganesh RC, Muthukumaran S. Crystal structure, energy gap and photoluminescence investigation of Mn /Cr -doped ZnS
                   nanostructures by precipitation method. J Mater Sci Mater Electron 2021;32:23174-88.  DOI
               60.      Liu Z, Hou J, He Q, Luo X, Huo D, Hou C. New application of Mn-doped ZnS quantum dots: phosphorescent sensor for the rapid
                   screening of chloramphenicol and tetracycline residues. Anal Methods 2020;12:3513-22.  DOI
               61.      Li F, Gao J, Wu H, Li Y, He X, Chen L. A highly selective and sensitive fluorescent sensor based on molecularly imprinted polymer-
                   functionalized Mn-doped ZnS quantum dots for detection of roxarsone in feeds. Nanomaterials 2022;12:2997.  DOI  PubMed  PMC
               62.      Zhang Y, Yuan X, Jiang W, Liu H. Determination of nereistoxin-related insecticide via quantum-dots-doped covalent organic
                   frameworks in a molecularly imprinted network. Mikrochim Acta 2020;187:464.  DOI
               63.      Wang Y, Wang Y, Liu H. A novel fluorescence and SPE adsorption nanomaterials of molecularly imprinted polymers based on
                   quantum dot-grafted covalent organic frameworks for the high selectivity and sensitivity detection of ferulic acid. Nanomaterials
                   2019;9:305.  DOI  PubMed  PMC
               64.      Jana J, Lee HJ, Chung JS, Kim MH, Hur SH. Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing
                   and cell-imaging. Anal Chim Acta 2019;1079:212-9.  DOI  PubMed
               65.      Wang J, Sheng Li R, Zhi Zhang H, Wang N, Zhang Z, Huang CZ. Highly fluorescent carbon dots as selective and visual probes for
                   sensing copper ions in living cells via an electron transfer process. Biosens Bioelectron 2017;97:157-63.  DOI
               66.      Fowley C, McCaughan B, Devlin A, Yildiz I, Raymo FM, Callan JF. Highly luminescent biocompatible carbon quantum dots by
   130   131   132   133   134   135   136   137   138   139   140