Page 134 - Read Online
P. 134

Page 16 of 19         Lee et al. Microstructures 2023;3:2023021  https://dx.doi.org/10.20517/microstructures.2023.08

                   Phys Chem Lett 2019;10:2463-9.  DOI
               7.       Rambabu D, Bhattacharyya S, Singh T, Maji TK. Stabilization of MAPbBr  perovskite quantum dots on perovskite MOFs by a one-
                                                                    3
                   step mechanochemical synthesis. Inorg Chem 2020;59:1436-43.  DOI  PubMed
               8.       Zhang Y, Zhou Z, Ji F, et al. Trash into treasure: δ-FAPbI  polymorph stabilized MAPbI  Perovskite with power conversion efficiency
                                                                            3
                                                         3
                   beyond 21. Adv Mater 2018;30:e1707143.  DOI
               9.       Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots: a review.
                   Environ Chem Lett 2020;18:703-27.  DOI  PubMed  PMC
               10.      Jouyandeh M, Mousavi Khadem SS, Habibzadeh S, et al. Quantum dots for photocatalysis: synthesis and environmental applications.
                   Green Chem 2021;23:4931-54.  DOI
               11.      Ye B, Jiang R, Yu Z, et al. Pt(111) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for
                   efficient overall water splitting. J Catal 2019;380:307-17.  DOI
               12.      Alsalloum AY, Turedi B, Zheng X, et al. Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI  inverted
                                                                                                   3
                   perovskite solar cells. ACS Energy Lett 2020;5:657-62.  DOI
               13.      Chen Z, Chen Z, Li H, Zhao X, Zhu M, Wang M. Investigation on charge carrier recombination of hybrid organic-inorganic
                   perovskites doped with aggregation-induced emission luminogen under high photon flux excitation. Adv Opt Mater 2018;6:1800221.
                   DOI
               14.      Masi S, Gualdrón-reyes AF, Mora-seró I. Stabilization of black perovskite phase in FAPbI  and CsPbI . ACS Energy Lett 2020;5:1974-
                                                                             3       3
                   85.  DOI
               15.      Wang D, Wright M, Elumalai NK, Uddin A. Stability of perovskite solar cells. Solar Energy Mater Solar Cells 2016;147:255-75.  DOI
               16.      Hou J, Wang Z, Chen P, Chen V, Cheetham AK, Wang L. Intermarriage of halide perovskites and metal-organic framework crystals.
                   Angew Chem Int Ed 2020;59:19434-49.  DOI
               17.      Hao M, Bai Y, Zeiske S, et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs -xFAxPbI  quantum dot
                                                                                                 3
                                                                                          1
                   solar cells with reduced phase segregation. Nat Energy 2020;5:79-88.  DOI
               18.      Nagaraj G, Mohammed MKA, Shekargoftar M, et al. High-performance perovskite solar cells using the graphene quantum dot-
                   modified SnO /ZnO photoelectrode. Mater Today Energy 2021;22:100853.  DOI
                            2
               19.      Zhao H, Yu X, Li C, et al. Carbon quantum dots modified TiO  composites for hydrogen production and selective glucose
                                                                2
                   photoreforming. J Energy Chem 2022;64:201-8.  DOI
               20.      Yoo D, Park Y, Cheon B, Park MH. Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale Res
                   Lett 2019;14:272.  DOI  PubMed  PMC
               21.      Abbas A, Tabish TA, Bull SJ, Lim TM, Phan AN. High yield synthesis of graphene quantum dots from biomass waste as a highly
                                 3+
                   selective probe for Fe  sensing. Sci Rep 2020;10:21262.  DOI  PubMed  PMC
               22.      Ganganboina AB, Dega NK, Tran HL, Darmonto W, Doong RA. Application of sulfur-doped graphene quantum dots@gold-carbon
                   nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021;181:113151.  DOI  PubMed
               23.      Shi Y, Wang Z, Meng T, et al. Red phosphorescent carbon quantum dot organic framework-based electroluminescent light-emitting
                   diodes exceeding 5% external quantum efficiency. J Am Chem Soc 2021;143:18941-51.  DOI
               24.      Wang S, Kang G, Cui F, Zhang Y. Dual-color graphene quantum dots and carbon nanoparticles biosensing platform combined with
                   Exonuclease III-assisted signal amplification for simultaneous detection of multiple DNA targets. Anal Chim Acta 2021;1154:338346.
                   DOI
               25.      Biswal BP, Shinde DB, Pillai VK, Banerjee R. Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic
                   imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale 2013;5:10556-61.  DOI  PubMed
               26.      Swarnkar A, Marshall AR, Sanehira EM, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency
                   photovoltaics. Science 2016;354:92-5.  DOI
               27.      Kar MR, Ray S, Patra BK, Bhaumik S. State of the art and prospects of metal halide perovskite core@shell nanocrystals and
                   nanocomposites. Mater Today Chem 2021;20:100424.  DOI
               28.      Yee PY, Brittman S, Mahadik NA, et al. Cu  S/PbS core/shell nanocrystals with improved chemical stability. Chem Mater
                                                  2-x
                   2021;33:6685-91.  DOI
               29.      Zhao Y, Xie C, Zhang X, Yang P. CsPbX  quantum dots embedded in zeolitic imidazolate framework-8 microparticles for bright white
                                              3
                   light-emitting devices. ACS Appl Nano Mater 2021;4:5478-85.  DOI
               30.      Pham T, Lee B, Kim J, Lee C. Enhancement of CO  capture by using synthesized nano-zeolite. J Taiwan Inst Chem Eng 2016;64:220-
                                                    2
                   6.  DOI
               31.      Zahmakiran M. Preparation and characterization of LTA-type zeolite framework dispersed ruthenium nanoparticles and their catalytic
                   application in the hydrolytic dehydrogenation of ammonia-borane for efficient hydrogen generation. Mater Sci Eng B 2012;177:606-
                   13.  DOI
               32.      Frentzel-beyme L, Kloß M, Pallach R, et al. Porous purple glass - a cobalt imidazolate glass with accessible porosity from a meltable
                   cobalt imidazolate framework. J Mater Chem A 2019;7:985-90.  DOI
               33.      Hou J, Ríos Gómez ML, Krajnc A, et al. Halogenated metal-organic framework glasses and liquids. J Am Chem Soc 2020;142:3880-
                   90.  DOI
               34.      Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. 3D microporous base-functionalized covalent organic frameworks for size-selective
                   catalysis. Angew Chem Int Ed 2014;53:2878-82.  DOI
   129   130   131   132   133   134   135   136   137   138   139