Page 395 - Read Online
P. 395

Pisano et al. Vessel Plus 2020;4:33  I  http://dx.doi.org/10.20517/2574-1209.2020.21                                                Page 13 of 13

                   endothelial dysfunction through proteinase-activated receptor-2 and thromboxane A2 release. J Hypertens 2016;34:869-76.
               43.  Roy S, Saiffedine M, Loutzenisher R, Triggle CR, Hollenberg MD. Dual endothelium-dependent vascular activities of proteinase-
                   activated receptor-2-activating peptides: evidence for receptor hereogeneity. Br J Pharmacol 1998;123:1434-40.
               44.  Chumachenko PV, Afanasyev MA, Ivanova AG, Drobkova IP, Kheimets GI, et al. Inflammatory infiltrates, vasa vasorum, and endothelial
                   NO synthase in the wall of thoracic aortic aneurysm. Arkh Patol 2019;81:45-52.
               45.  Schmitt R, Tscheuschler A, Laschinski P, Uffelmann X, Discher P, et al. A potential key mechanism in ascending aortic aneurysm
                   development: detection of a linear relationship between MMP-14/TIMP-2 ratio and active MMP-2. PLoS One 2019;14:e0212859.
               46.  Khanafer K, Ghosh A, Vafai K. Correlation between MMP and TIMP levels and elastic moduli of ascending thoracic aortic aneurysms.
                   Cardiovasc Revasc Med 2019;20:324-7.
               47.  Tscheuschler A, Meffert P, Beyersdorf F, Heilmann C, Kocher N, et al. MMP-2 isoforms in aortic tissue and serum of patients with
                   ascending aortic aneurysms and aortic root aneurysms. PLoS One 2016;11:e0164308.
               48.  Meffert P, Tscheuschler A, Beyersdorf F, Heilmann C, Kocher N, et al. Characterization of serum matrix metalloproteinase 2/9 levels in
                   patients with ascending aortic aneurysms. Interact Cardiovasc Thorac Surg 2017;24:20-6.
               49.  Evans SF, Docheva D, Bernecker A, Colnot C, Richter RP, et al. Solid-supported lipid bilayers to drive stem cell fate and tissue
                   architecture using periosteum derived progenitor cells. Biomaterials 2013;34:1878-87.
               50.  Li H, Qin X, Yang J, Ouyang C, Wu J, et al. Smooth muscle-specific LKB1 deletion exaggerates angiotensin II-induced abdominal aortic
                   aneurysm in mice. J Mol Cell Cardiol 2019;130:131-9.
               51.  Scola L, Di Maggio FM, Vaccarino L, Bova M, Forte GI. Role of TGF-β pathway polymorphisms in sporadic thoracic aortic aneurysm:
                   rs900 TGF-β2 is a marker of differential gender susceptibility. Mediators Inflamm 2014;2014:165758.
               52.  Balistreri CR, Madonna R, Melino G, Caruso C. The emerging role of Notch pathway in ageing: focus on the related mechanisms in age-
                   related diseases. Ageing Res Rev 2016;29:50-65.
               53.  Balistreri CR, Crapanzano F, Schirone L, Allegra A, Pisano C, et al. Deregulation of Notch1 pathway and circulating endothelial
                   progenitor cell (EPC) number in patients with bicuspid aortic valve with and without ascending aorta aneurysm. Sci Rep 2018;8:13834.
               54.  Cesarini V, Pisano C, Rossi G, Balistreri CR, Botti F, et al. Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms.
                   Sci Rep 2019;9:12206.
               55.  Balistreri CR, Maresi E, Pisano C, Di Maggio FM, Vaccarino L, et al. Identification of three particular morphological phenotypes in
                   sporadic thoracic aortic aneurysm: phenotype III as sporadic thoracic aortic aneurysm biomarker in aged individuals. Rejuvenation Res
                   2014;17:192-6.
               56.  Balistreri CR, Pisano C, Candore G, Maresi E, Codispoti M, et al. Focus on the unique mechanisms involved in thoracic aortic aneurysm
                   formation in bicuspid aortic valve versus tricuspid aortic valve patients: clinical implications of a pilot study. Eur J Cardiothorac Surg
                   2013;43:e180-6.
               57.  Pisano C, Maresi E, Merlo D, Balistreri CR, Candore G, et al. A particular phenotype of ascending aorta aneurysms as precursor of type A
                   aortic dissection. Interact Cardiovasc Thorac Surg 2012;15:840-6.
               58.  Pisano C, Maresi E, Balistreri CR, Candore G, Merlo D, et al. Histological and genetic studies in patients with bicuspid aortic valve and
                   ascending aorta complications. Interact Cardiovasc Thorac Surg 2012;14:300-6.
               59.  Nardi P, Pellegrino A, Russo M, Saitto G, Bertoldo F, et al. Mid-term results of different surgical techniques to replace the ascending aorta
                   associated with bicuspid aortic valve disease. Ann Thorac Surg 2013;96:1648-55.
               60.  Krüger T, Forkavets O, Veseli K, Lausberg H, Vöhringer L, et al. Ascending aortic elongation and the risk of dissection. Eur J
                   Cardiothorac Surg 2016;50:241-7.
               61.  Wu J, Zafar MA, Li Y, Saeyeldin A, Huang Y, et al. Ascending aortic length and risk of aortic adverse events: the neglected dimension. J
                   Am Coll Cardiol 2019;74:1883-94.
               62.  Heuts S, Adriaans BP, Rylski B, Mihl C, Bekkers SCAM, et al. Evaluating the diagnostic accuracy of maximal aortic diameter, length and
                   volume for prediction of aortic dissection. Heart 2020;106:892-7.
               63.  Fels B, Kusche-Vihrog K. It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 2020;472:419-33.
               64.  Nardi P, Ruvolo G. Current indications to surgical repair of the aneurysms of ascending aorta. J Vascular Endovascular Surgery 2016;1:9.
               65.  Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending
                   aorta. Circ Cardiovasc Imaging 2012;5:457-66.
               66.  Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M, et al. Aortic dilation inbicuspid aortic valve disease: flow pattern is a major
                   contributor and differs with valve fusion type. Circ Cardiovasc Imaging 2013;6:499-507.
               67.  Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P, et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional
                   outflow patterns, wall shear stress and expression of aortopathy. Circulation 2014;129:673-82.
               68.  Della Corte A, Quarto C, Bancone C, Castaldo C, Di Meglio F, et al. Spatiotemporal patterns of smooth muscle cell changes in ascending
                   aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling. J Thorac Cardiovasc Surg 2008;135:8-
                   18, 18.e1-2.
               69.  Guzzardi DG, Barker AJ, van Ooij P, Malaisrie SC, Puthumana JJ, et al. Valve-related hemodynamics mediate human bicuspid
                   aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol 2015;66:892-900.
               70.  Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, et al. Characterization of critical hemodynamics contributing to aneurysmal
                   remodeling at the basilar terminus in a rabbit model. Stroke 2010;41:1774-82.
   390   391   392   393   394   395   396   397   398   399   400