Page 340 - Read Online
P. 340

Varikuti et al. Vessel Plus 2020;4:28  I  http://dx.doi.org/10.20517/2574-1209.2020.27                                               Page 19 of 20

               126. Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med
                   2013;19:156-67.
               127. Kavunga-Membo H, Ilombe G, Masumu J, Matangila J, Imponge J, et al. Molecular identification of Plasmodium species in symptomatic
                   children of Democratic Republic of Congo. Malar J 2018;17:334.
               128. Gillrie MR, Lee K, Gowda DC, Davis SP, Monestier M, et al. Plasmodium falciparum histones induce endothelial proinflammatory
                   response and barrier dysfunction. Am J Pathol 2012;180:1028-39.
               129. Newbold C, Craig A, Kyes S, Rowe A, Fernandez-Reyes D, et al. Cytoadherence, pathogenesis and the infected red cell surface in
                   Plasmodium falciparum. Int J Parasitol 1999;29:927-37.
               130. Idro R, Marsh K, John CC, Newton CR. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive
                   outcome. Pediatr Res 2010;68:267-74.
               131. Kats LM, Proellocks NI, Buckingham DW, Blanc L, Hale J, et al. Interactions between Plasmodium falciparum skeleton-binding protein
                   1 and the membrane skeleton of malaria-infected red blood cells. Biochim Biophys Acta 2015;1848:1619-28.
               132. Combes V, Taylor TE, Juhan-Vague I, Mege JL, Mwenechanya J, et al. Circulating endothelial microparticles in malawian children with
                   severe falciparum malaria complicated with coma. JAMA 2004;291:2542-4.
               133. Weinkopff T, Roys H, Bowlin A, Scott P. Leishmania infection induces macrophage vascular endothelial growth factor A production in an
                   ARNT/HIF-dependent manner. Infect Immun 2019;87.
               134. Chowdhury KD, Sen G, Sarkar A, Biswas T. Role of endothelial dysfunction in modulating the plasma redox homeostasis in visceral
                   leishmaniasis. Biochim Biophys Acta 2011;1810:652-65.
               135. Lugo-Yarbuh A, Valera M, Alarcon M, Moreno E, Premoli-Percoco G, et al. Detection of Leishmania (Viannia) braziliensis in vascular
                   endothelium lesions of patients with localized cutaneous leishmaniasis. Invest Clin 2003;44:61-76.
               136. Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, et al. Proteomic analysis of the secretome of Leishmania donovani.
                   Genome Biol 2008;9:R35.
               137. Heinonen KM, Dube N, Bourdeau A, Lapp WS, Tremblay ML. Protein tyrosine phosphatase 1B negatively regulates macrophage
                   development through CSF-1 signaling. Proc Natl Acad Sci U S A 2006;103:2776-81.
               138. Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M. Leishmania-induced increases in activation of macrophage SHP-1 tyrosine
                   phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 1999;29:3737-44.
               139. Furtado JM, Smith JR, Belfort R Jr, Gattey D, Winthrop KL. Toxoplasmosis: a global threat. J Glob Infect Dis 2011;3:281-4.
               140. Derouin F, Pelloux H, Parasitology ESGoC. Prevention of toxoplasmosis in transplant patients. Clin Microbiol Infect 2008;14:1089-101.
               141. Furtado JM, Bharadwaj AS, Chipps TJ, Pan Y, Ashander LM, et al. Toxoplasma gondii tachyzoites cross retinal endothelium assisted by
                   intercellular adhesion molecule-1 in vitro. Immunol Cell Biol 2012;90:912-5.
               142. Beauvillain C, Juste MO, Dion S, Pierre J, Dimier-Poisson I. Exosomes are an effective vaccine against congenital toxoplasmosis in mice.
                   Vaccine 2009;27:1750-7.
               143. Li Y, Xiu F, Mou Z, Xue Z, Du H, et al. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK
                   signaling pathway. Nanomedicine (Lond) 2018;13:1157-68.
               144. Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, et al. Chagas’ disease. Clin Microbiol Rev 1992;5:400-19.
               145. Morris SA, Tanowitz HB, Wittner M, Bilezikian JP. Pathophysiological insights into the cardiomyopathy of Chagas’ disease. Circulation
                   1990;82:1900-9.
               146. Torres SH, Finol HJ, Montes de Oca M, Vasquez F, Puigbo JJ, et al. Capillary damage in skeletal muscle in advanced Chagas’ disease
                   patients. Parasitol Res 2004;93:364-8.
               147. Rossi MA. Microvascular changes as a cause of chronic cardiomyopathy in Chagas’ disease. Am Heart J 1990;120:233-6.
               148. Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev
                   2011;24:655-81.
               149. Perez-Molina JA, Molina I. Chagas disease. Lancet 2018;391:82-94.
               150. Nunes MC, Dones W, Morillo CA, Encina JJ, Ribeiro AL, et al. Chagas disease: an overview of clinical and epidemiological aspects. J
                   Am Coll Cardiol 2013;62:767-76.
               151. Coura JR, Dias JC. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz
                   2009;104 Suppl 1:31-40.
               152. Burleigh BA, Andrews NW. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol 1995;49:175-200.
               153. Tanowitz HB, Burns ER, Sinha AK, Kahn NN, Morris SA, et al. Enhanced platelet adherence and aggregation in Chagas’ disease: a
                   potential pathogenic mechanism for cardiomyopathy. Am J Trop Med Hyg 1990;43:274-81.
               154. Scharfstein J, Schmitz V, Morandi V, Capella MM, Lima AP, et al. Host cell invasion by Trypanosoma cruzi is potentiated by activation
                   of bradykinin B(2) receptors. J Exp Med 2000;192:1289-300.
               155. Andrade D, Serra R, Svensjo E, Lima AP, Ramos ES Jr, et al. Trypanosoma cruzi invades host cells through the activation of endothelin
                   and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br J Pharmacol 2012;165:1333-47.
               156. Nardy AF, Freire-de-Lima CG, Perez AR, Morrot A. Role of trypanosoma cruzi trans-sialidase on the escape from host immune
                   surveillance. Front Microbiol 2016;7:348.
               157. Libby P, Alroy J, Pereira ME. A neuraminidase from Trypanosoma cruzi removes sialic acid from the surface of mammalian myocardial
                   and endothelial cells. J Clin Invest 1986;77:127-35.
               158. Petkova SB, Huang H, Factor SM, Pestell RG, Bouzahzah B, et al. The role of endothelin in the pathogenesis of Chagas’ disease. Int J
                   Parasitol 2001;31:499-511.
   335   336   337   338   339   340   341   342   343   344   345