Page 338 - Read Online
P. 338

Varikuti et al. Vessel Plus 2020;4:28  I  http://dx.doi.org/10.20517/2574-1209.2020.27                                               Page 17 of 20

               65.  Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, et al. Host-directed drug therapies for neglected tropical diseases caused by
                   protozoan parasites. Front Microbiol 2018;9:2655.
               66.  Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, et al. Control of neglected tropical diseases. N Engl J Med 2007;357:1018-
                   27.
               67.  Fletcher SM, Stark D, Harkness J, Ellis J. Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev
                   2012;25:420-49.
               68.  Cunha-Neto E, Chevillard C, Rodrigues MM, Bozza MT. Immunology and infection by protozoan parasites. Mediators Inflamm
                   2015;2015:504951.
               69.  Norman FF, Comeche B, Chamorro S, Perez-Molina JA, Lopez-Velez R. Update on the major imported protozoan infections in travelers
                   and migrants. Future Microbiol 2020;15:213-25.
               70.  Burgess SL, Gilchrist CA, Lynn TC, Petri WA Jr. Parasitic protozoa and interactions with the host intestinal microbiota. Infect Immun
                   2017;85.
               71.  Chen MX, Ai L, Chen JH, Feng XY, Chen SH, et al. DNA microarray detection of 18 important human blood protozoan species. PLoS
                   Negl Trop Dis 2016;10:e0005160.
               72.  Andersson AC, Resende M, Salanti A, Nielsen MA, Holst PJ. Novel adenovirus encoded virus-like particles displaying the placental
                   malaria associated VAR2CSA antigen. Vaccine 2017;35:1140-7.
               73.  Gillrie MR, Ho M. Dynamic interactions of Plasmodium spp. with vascular endothelium. Tissue Barriers 2017;5:e1268667.
               74.  Spillman NJ, Dalmia VK, Goldberg DE. Exported epoxide hydrolases modulate erythrocyte vasoactive lipids during plasmodium
                   falciparum infection. mBio 2016;7.
               75.  Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, et al. Brain endothelial cells increase the proliferation of Plasmodium falciparum
                   through production of soluble factors. Exp Parasitol 2014;145:34-41.
               76.  Abedin TS, Thompson LK, Miller DO, Krupicka E. Structural and magnetic properties of a self-assembled spheroidal triakonta-
                   hexanuclear Cu36 cluster. Chem Commun (Camb) 2003:708-9.
               77.  Fritzsche C, Schleicher U, Bogdan C. Endothelial nitric oxide synthase limits the inflammatory response in mouse cutaneous
                   leishmaniasis. Immunobiology 2010;215:826-32.
               78.  ElHassan AM, Gaafar A, Theander TG. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major. Clin Exp
                   Immunol 1995;99:445-53.
               79.  Henseleit U, Steinbrink K, Sunderkotter C, Goebeler M, Roth J, et al. Expression of murine VCAM-1 in vitro and in different models of
                   inflammation in vivo: correlation with immigration of monocytes. Exp Dermatol 1995;4:249-56.
               80.  Weinkopff T, Konradt C, Christian DA, Discher DE, Hunter CA, et al. Leishmania major infection-induced VEGF-A/VEGFR-2 signaling
                   promotes lymphangiogenesis that controls disease. J Immunol 2016;197:1823-31.
               81.  Araujo AP, Giorgio S. Immunohistochemical evidence of stress and inflammatory markers in mouse models of cutaneous leishmaniosis.
                   Arch Dermatol Res 2015;307:671-82.
               82.  Dalton JE, Glover AC, Hoodless L, Lim EK, Beattie L, et al. The neurotrophic receptor Ntrk2 directs lymphoid tissue neovascularization
                   during Leishmania donovani infection. PLoS Pathog 2015;11:e1004681.
               83.  Konradt C, Ueno N, Christian DA, Delong JH, Pritchard GH, et al. Endothelial cells are a replicative niche for entry of Toxoplasma
                   gondii to the central nervous system. Nat Microbiol 2016;1:16001.
               84.  Deckert-Schluter M, Bluethmann H, Kaefer N, Rang A, Schluter D. Interferon-gamma receptor-mediated but not tumor necrosis factor
                   receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in
                   murine Toxoplasma encephalitis. Am J Pathol 1999;154:1549-61.
               85.  Coates BM, Sullivan DP, Makanji MY, Du NY, Olson CL, et al. Endothelial transmigration by Trypanosoma cruzi. PLoS One
                   2013;8:e81187.
               86.  Barrias ES, de Carvalho TM, De Souza W. Trypanosoma cruzi: entry into mammalian host cells and parasitophorous vacuole formation.
                   Front Immunol 2013;4:186.
               87.  Todorov AG, Andrade D, Pesquero JB, Araujo Rde C, Bader M, et al. Trypanosoma cruzi induces edematogenic responses in mice and
                   invades cardiomyocytes and endothelial cells in vitro by activating distinct kinin receptor (B1/B2) subtypes. FASEB J 2003;17:73-5.
               88.  Del Nery E, Juliano MA, Lima AP, Scharfstein J, Juliano L. Kininogenase activity by the major cysteinyl proteinase (cruzipain) from
                   Trypanosoma cruzi. J Biol Chem 1997;272:25713-8.
               89.  Wittner M, Christ GJ, Huang H, Weiss LM, Hatcher VB, et al. Trypanosoma cruzi induces endothelin release from endothelial cells. J
                   Infect Dis 1995;171:493-7.
               90.  Tanowitz HB, Gumprecht JP, Spurr D, Calderon TM, Ventura MC, et al. Cytokine gene expression of endothelial cells infected with
                   Trypanosoma cruzi. J Infect Dis 1992;166:598-603.
               91.  Ashton AW, Mukherjee S, Nagajyothi FN, Huang H, Braunstein VL, et al. Thromboxane A2 is a key regulator of pathogenesis during
                   Trypanosoma cruzi infection. J Exp Med 2007;204:929-40.
               92.  Silva JF, Capettini LS, da Silva JF, Sales-Junior P, Cruz JS, et al. Mechanisms of vascular dysfunction in acute phase of Trypanosoma
                   cruzi infection in mice. Vascul Pharmacol 2016;82:73-81.
               93.  Mukherjee S, Huang H, Petkova SB, Albanese C, Pestell RG, et al. Trypanosoma cruzi infection activates extracellular signal-regulated
                   kinase in cultured endothelial and smooth muscle cells. Infect Immun 2004;72:5274-82.
               94.  Huang H, Petkova SB, Cohen AW, Bouzahzah B, Chan J, et al. Activation of transcription factors AP-1 and NF-kappa B in murine
                   Chagasic myocarditis. Infect Immun 2003;71:2859-67.
   333   334   335   336   337   338   339   340   341   342   343