Page 339 - Read Online
P. 339

Page 18 of 20                                                Varikuti et al. Vessel Plus 2020;4:28  I  http://dx.doi.org/10.20517/2574-1209.2020.27

               95.  Huang H, Calderon TM, Berman JW, Braunstein VL, Weiss LM, et al. Infection of endothelial cells with Trypanosoma cruzi activates
                   NF-kappaB and induces vascular adhesion molecule expression. Infect Immun 1999;67:5434-40.
               96.  Grab DJ, Kennedy PG. Traversal of human and animal trypanosomes across the blood-brain barrier. J Neurovirol 2008;14:344-51.
               97.  Masocha W, Robertson B, Rottenberg ME, Mhlanga J, Sorokin L, et al. Cerebral vessel laminins and IFN-gamma define Trypanosoma
                   brucei brucei penetration of the blood-brain barrier. J Clin Invest 2004;114:689-94.
               98.  Girard M, Giraud S, Courtioux B, Jauberteau-Marchan MO, Bouteille B. Endothelial cell activation in the presence of African
                   trypanosomes. Mol Biochem Parasitol 2005;139:41-9.
               99.  Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009;1:a001651.
               100. Ammar Z, Plazolles N, Baltz T, Coustou V. Identification of trans-sialidases as a common mediator of endothelial cell activation by
                   African trypanosomes. PLoS Pathog 2013;9:e1003710.
               101. Nikolskaia OV, de A Lima APC, Kim YV, Lonsdale-Eccles JD, Fukuma T, et al. Blood-brain barrier traversal by African trypanosomes
                   requires calcium signaling induced by parasite cysteine protease. J Clin Invest 2006;116:2739-47.
               102. Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA. Exosomes from Plasmodium yoelii-infected reticulocytes protect
                   mice from lethal infections. PLoS One 2011;6:e26588.
               103. Martin-Jaular L, de Menezes-Neto A, Monguio-Tortajada M, Elizalde-Torrent A, Diaz-Varela M, et al. Corrigendum: spleen-dependent
                   immune protection elicited by CpG adjuvanted reticulocyte-derived exosomes from malaria infection is associated with changes in T cell
                   subsets’ distribution. Front Cell Dev Biol 2016;4:153.
               104. Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, et al. Cell-cell communication between malaria-infected red
                   blood cells via exosome-like vesicles. Cell 2013;153:1120-33.
               105. Silverman JM, Clos J, de’Oliveira CC, Shirvani O, Fang Y, et al. An exosome-based secretion pathway is responsible for protein export
                   from Leishmania and communication with macrophages. J Cell Sci 2010;123:842-52.
               106. Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, et al. Leishmania exosomes modulate innate and adaptive immune responses
                   through effects on monocytes and dendritic cells. J Immunol 2010;185:5011-22.
               107. Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S, et al. Exosome secretion by the parasitic protozoan leishmania within the
                   sand fly midgut. Cell Rep 2015;13:957-67.
               108. Hassani K, Shio MT, Martel C, Faubert D, Olivier M. Absence of metalloprotease GP63 alters the protein content of Leishmania
                   exosomes. PLoS One 2014;9:e95007.
               109. Ghosh J, Bose M, Roy S, Bhattacharyya SN. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and
                   facilitate murine liver infection. Cell Host Microbe 2013;13:277-88.
               110.  Schnitzer JK, Berzel S, Fajardo-Moser M, Remer KA, Moll H. Fragments of antigen-loaded dendritic cells (DC) and DC-derived
                   exosomes induce protective immunity against Leishmania major. Vaccine 2010;28:5785-93.
               111.  Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce
                   a protective immune response against T. gondii infection. Infect Immun 2004;72:4127-37.
               112.  Beauvillain C, Ruiz S, Guiton R, Bout D, Dimier-Poisson I. A vaccine based on exosomes secreted by a dendritic cell line confers
                   protection against T. gondii infection in syngeneic and allogeneic mice. Microbes Infect 2007;9:1614-22.
               113.  Li Y, Liu Y, Xiu F, Wang J, Cong H, et al. Characterization of exosomes derived from Toxoplasma gondii and their functions in
                   modulating immune responses. Int J Nanomedicine 2018;13:467-77.
               114.  Silva VO, Maia MM, Torrecilhas AC, Taniwaki NN, Namiyama GM, et al. Extracellular vesicles isolated from Toxoplasma gondii induce
                   host immune response. Parasite Immunol 2018;40:e12571.
               115.  Cestari I, Ansa-Addo E, Deolindo P, Inal JM, Ramirez MI. Trypanosoma cruzi immune evasion mediated by host cell-derived
                   microvesicles. J Immunol 2012;188:1942-52.
               116.  Cestari I, Ramirez MI. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant
                   strains to invade eukaryotic cells. PLoS One 2010;5:e9721.
               117.  Wyllie MP, Ramirez MI. Microvesicles released during the interaction between Trypanosoma cruzi TcI and TcII strains and host blood
                   cells inhibit complement system and increase the infectivity of metacyclic forms of host cells in a strain-independent process. Pathog Dis
                   2017;75.
               118.  Borges BC, Uehara IA, Dias LO, Brigido PC, da Silva CV, et al. Mechanisms of infectivity and evasion derived from microvesicles cargo
                   produced by trypanosoma cruzi. Front Cell Infect Microbiol 2016;6:161.
               119.  Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR, da Silva JS, Schumacher RI, et al. Trypanosoma cruzi: parasite shed vesicles increase
                   heart parasitism and generate an intense inflammatory response. Microbes Infect 2009;11:29-39.
               120. Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, et al. Proteomic analysis of Trypanosoma cruzi
                   secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 2013;12:883-97.
               121. Ramirez-Toloza G, Ferreira A. Trypanosoma cruzi evades the complement system as an efficient strategy to survive in the mammalian
                   host: the specific roles of host/parasite molecules and trypanosoma cruzi calreticulin. Front Microbiol 2017;8:1667.
               122. Karasu E, Eisenhardt SU, Harant J, Huber-Lang M. Extracellular vesicles: packages sent with complement. Front Immunol 2018;9:721.
               123. Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, et al. Extracellular vesicles from trypanosoma brucei mediate virulence factor
                   transfer and cause host anemia. Cell 2016;164:246-57.
               124. Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African trypanosomiasis-associated anemia: the contribution of
                   the interplay between parasites and the mononuclear phagocyte system. Front Immunol 2018;9:218.
               125. Garcia LS. Malaria. Clin Lab Med 2010;30:93-129.
   334   335   336   337   338   339   340   341   342   343   344