Page 66 - Read Online
P. 66
Bui et al. Vessel Plus 2021;6:31 https://dx.doi.org/10.20517/2574-1209.2021.97 Page 11 of 12
2018;3:294-312. DOI PubMed PMC
19. Yoo SJ, Thabit O, Kim EK, et al. 3D printing in medicine of congenital heart diseases. 3D Print Med 2015;2:3. DOI PubMed PMC
20. Garekar S, Bharati A, Chokhandre M, et al. Clinical application and multidisciplinary assessment of three dimensional printing in
double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg 2016;7:344-50. DOI PubMed
21. Hoashi T, Ichikawa H, Nakata T, et al. Utility of a super-flexible three-dimensional printed heart model in congenital heart surgery.
Interact Cardiovasc Thorac Surg 2018;27:749-55. DOI PubMed
22. Betancourt LG, Singh HR, Agarwal A. Partial anomalous left pulmonary artery in heterotaxy syndrome. A case report and review of
literature. Prog Pediatr Cardiol 2021;60:101304. DOI
23. Agarwal A. Three-dimensional printed cardiac model in assisting surgical planning in Heterotaxy patient with complex systemic and
pulmonary venous drainage. Society for Cardiovascular Magnetic Resonance Conference; 2018 Jan 31 - Feb 03; Barcelona, Spain.
24. Milano EG, Capelli C, Wray J, et al. Current and future applications of 3D printing in congenital cardiology and cardiac surgery. Br J
Radiol 2019;92:20180389. DOI PubMed PMC
25. Lau I, Wong YH, Yeong CH, et al. Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models. Quant
Imaging Med Surg 2019;9:107-14. DOI PubMed PMC
26. McMenamin PG, Quayle MR, McHenry CR, Adams JW. The production of anatomical teaching resources using three-dimensional
(3D) printing technology. Anat Sci Educ 2014;7:479-86. DOI PubMed
27. Li KHC, Kui C, Lee EKM, et al. The role of 3D printing in anatomy education and surgical training: a narrative review. MedEdPublish
2016;6:92. DOI
28. Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R. Three-dimensional modeling may improve surgical education and clinical
practice. Surg Innov 2016;23:189-95. DOI PubMed
29. Valverde I, Gomez G, Gonzalez A, et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh
procedure. Cardiol Young 2015;25:698-704. DOI PubMed
30. Ganguli A, Pagan-Diaz GJ, Grant L, et al. 3D printing for preoperative planning and surgical training: a review. Biomed Microdevices
2018;20:65. DOI PubMed
31. Goo HW, Park SJ, Yoo SJ. Advanced medical use of three-dimensional imaging in congenital heart disease: augmented reality, mixed
reality, virtual reality, and three-dimensional printing. Korean J Radiol 2020;21:133-45. DOI PubMed PMC
32. Gilbert F, O'Connell CD, Mladenovska T, Dodds S. Print me an organ? Sci Eng Ethics 2018;24:73-91. DOI PubMed
33. Guidance for Industry and Food and Drug Administration Staff. Technical considerations for additive manufactured medical devices.
Available from: https://www.fda.gov/media/97633/download [Last accessed on 15 Dec 2021].
34. Kim B, Loke YH, Mass P, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease:
development and usability testing. JMIR Cardio 2020;4:e20633. DOI PubMed PMC
35. Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health
2019;19:238. DOI PubMed PMC
36. Mahmood F, Mahmood E, Dorfman RG, et al. Augmented reality and ultrasound education: initial experience. J Cardiothorac Vasc
Anesth 2018;32:1363-7. DOI PubMed
37. Pfandler M, Lazarovici M, Stefan P, Wucherer P, Weigl M. Virtual reality-based simulators for spine surgery: a systematic review.
Spine J 2017;17:1352-63. DOI PubMed
38. Pushparajah K, Chu KYK, Deng S, et al. Virtual reality three-dimensional echocardiographic imaging for planning surgical
atrioventricular valve repair. JTCVS Tech 2021;7:269-77. DOI PubMed PMC
39. Tandon A, Burkhardt BEU, Batsis M, et al. Sinus venosus defects: anatomic variants and transcatheter closure feasibility using virtual
reality planning. JACC Cardiovasc Imaging 2019;12:921-4. DOI PubMed
40. Ayerbe VMC, Morales MLV, Rojas CJL, Cortés MLA. Visualization of 3D models through virtual reality in the planning of
congenital cardiothoracic anomalies correction: an initial experience. World J Pediatr Congenit Heart Surg 2020;11:627-9. DOI
PubMed
41. Ong CS, Krishnan A, Huang CY, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis 2018;13:357-61. DOI
PubMed
42. Knecht S, Brantner P, Cattin P, Tobler D, Kühne M, Sticherling C. State-of-the-art multimodality approach to assist ablations in
complex anatomies-from 3D printing to virtual reality. Pacing Clin Electrophysiol 2019;42:101-3. DOI PubMed
43. Chen X, Hu J. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality. Expert Rev Med Devices
2018;15:435-44. DOI PubMed
44. Kim Y, Kim H, Kim YO. Virtual reality and augmented reality in plastic surgery: a review. Arch Plast Surg 2017;44:179-87. DOI
PubMed PMC
45. Ender J, Koncar-Zeh J, Mukherjee C, et al. Value of augmented reality-enhanced transesophageal echocardiography (TEE) for
determining optimal annuloplasty ring size during mitral valve repair. Ann Thorac Surg 2008;86:1473-8. DOI PubMed
46. Opolski MP, Michałowska IM, Borucki BA, Nicińska B, Szumowski Ł, Sterliński M. Augmented-reality computed tomography-
guided transcatheter pacemaker implantation in dextrocardia and congenitally corrected transposition of great arteries. Cardiol J
2018;25:412-3. DOI PubMed
47. Salavitabar A, Figueroa CA, Lu JC, Owens ST, Axelrod DM, Zampi JD. Emerging 3D technologies and applications within congenital
heart disease: teach, predict, plan and guide. Future Cardiol 2020;16:695-709. DOI PubMed