Page 66 - Read Online
P. 66

Bui et al. Vessel Plus 2021;6:31  https://dx.doi.org/10.20517/2574-1209.2021.97  Page 11 of 12

                   2018;3:294-312.  DOI  PubMed  PMC
               19.      Yoo SJ, Thabit O, Kim EK, et al. 3D printing in medicine of congenital heart diseases. 3D Print Med 2015;2:3.  DOI  PubMed  PMC
               20.      Garekar S, Bharati A, Chokhandre M, et al. Clinical application and multidisciplinary assessment of three dimensional printing in
                   double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg 2016;7:344-50.  DOI  PubMed
               21.      Hoashi T, Ichikawa H, Nakata T, et al. Utility of a super-flexible three-dimensional printed heart model in congenital heart surgery.
                   Interact Cardiovasc Thorac Surg 2018;27:749-55.  DOI  PubMed
               22.      Betancourt LG, Singh HR, Agarwal A. Partial anomalous left pulmonary artery in heterotaxy syndrome. A case report and review of
                   literature. Prog Pediatr Cardiol 2021;60:101304.  DOI
               23.      Agarwal A. Three-dimensional printed cardiac model in assisting surgical planning in Heterotaxy patient with complex systemic and
                   pulmonary venous drainage. Society for Cardiovascular Magnetic Resonance Conference; 2018 Jan 31 - Feb 03; Barcelona, Spain.
               24.      Milano EG, Capelli C, Wray J, et al. Current and future applications of 3D printing in congenital cardiology and cardiac surgery. Br J
                   Radiol 2019;92:20180389.  DOI  PubMed  PMC
               25.      Lau I, Wong YH, Yeong CH, et al. Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models. Quant
                   Imaging Med Surg 2019;9:107-14.  DOI  PubMed  PMC
               26.      McMenamin PG, Quayle MR, McHenry CR, Adams JW. The production of anatomical teaching resources using three-dimensional
                   (3D) printing technology. Anat Sci Educ 2014;7:479-86.  DOI  PubMed
               27.      Li KHC, Kui C, Lee EKM, et al. The role of 3D printing in anatomy education and surgical training: a narrative review. MedEdPublish
                   2016;6:92.  DOI
               28.      Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R. Three-dimensional modeling may improve surgical education and clinical
                   practice. Surg Innov 2016;23:189-95.  DOI  PubMed
               29.      Valverde I, Gomez G, Gonzalez A, et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh
                   procedure. Cardiol Young 2015;25:698-704.  DOI  PubMed
               30.      Ganguli A, Pagan-Diaz GJ, Grant L, et al. 3D printing for preoperative planning and surgical training: a review. Biomed Microdevices
                   2018;20:65.  DOI  PubMed
               31.      Goo HW, Park SJ, Yoo SJ. Advanced medical use of three-dimensional imaging in congenital heart disease: augmented reality, mixed
                   reality, virtual reality, and three-dimensional printing. Korean J Radiol 2020;21:133-45.  DOI  PubMed  PMC
               32.      Gilbert F, O'Connell CD, Mladenovska T, Dodds S. Print me an organ? Sci Eng Ethics 2018;24:73-91.  DOI  PubMed
               33.      Guidance for Industry and Food and Drug Administration Staff. Technical considerations for additive manufactured medical devices.
                   Available from: https://www.fda.gov/media/97633/download [Last accessed on 15 Dec 2021].
               34.      Kim B, Loke YH, Mass P, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease:
                   development and usability testing. JMIR Cardio 2020;4:e20633.  DOI  PubMed  PMC
               35.      Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery. BMC Oral Health
                   2019;19:238.  DOI  PubMed  PMC
               36.      Mahmood F, Mahmood E, Dorfman RG, et al. Augmented reality and ultrasound education: initial experience. J Cardiothorac Vasc
                   Anesth 2018;32:1363-7.  DOI  PubMed
               37.      Pfandler M, Lazarovici M, Stefan P, Wucherer P, Weigl M. Virtual reality-based simulators for spine surgery: a systematic review.
                   Spine J 2017;17:1352-63.  DOI  PubMed
               38.      Pushparajah K, Chu KYK, Deng S, et al. Virtual reality three-dimensional echocardiographic imaging for planning surgical
                   atrioventricular valve repair. JTCVS Tech 2021;7:269-77.  DOI  PubMed  PMC
               39.      Tandon A, Burkhardt BEU, Batsis M, et al. Sinus venosus defects: anatomic variants and transcatheter closure feasibility using virtual
                   reality planning. JACC Cardiovasc Imaging 2019;12:921-4.  DOI  PubMed
               40.      Ayerbe VMC, Morales MLV, Rojas CJL, Cortés MLA. Visualization of 3D models through virtual reality in the planning of
                   congenital cardiothoracic anomalies correction: an initial experience. World J Pediatr Congenit Heart Surg 2020;11:627-9.  DOI
                   PubMed
               41.      Ong CS, Krishnan A, Huang CY, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis 2018;13:357-61.  DOI
                   PubMed
               42.      Knecht S, Brantner P, Cattin P, Tobler D, Kühne M, Sticherling C. State-of-the-art multimodality approach to assist ablations in
                   complex anatomies-from 3D printing to virtual reality. Pacing Clin Electrophysiol 2019;42:101-3.  DOI  PubMed
               43.      Chen X, Hu J. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality. Expert Rev Med Devices
                   2018;15:435-44.  DOI  PubMed
               44.      Kim Y, Kim H, Kim YO. Virtual reality and augmented reality in plastic surgery: a review. Arch Plast Surg 2017;44:179-87.  DOI
                   PubMed  PMC
               45.      Ender J, Koncar-Zeh J, Mukherjee C, et al. Value of augmented reality-enhanced transesophageal echocardiography (TEE) for
                   determining optimal annuloplasty ring size during mitral valve repair. Ann Thorac Surg 2008;86:1473-8.  DOI  PubMed
               46.      Opolski MP, Michałowska IM, Borucki BA, Nicińska B, Szumowski Ł, Sterliński M. Augmented-reality computed tomography-
                   guided transcatheter pacemaker implantation in dextrocardia and congenitally corrected transposition of great arteries. Cardiol J
                   2018;25:412-3.  DOI  PubMed
               47.      Salavitabar A, Figueroa CA, Lu JC, Owens ST, Axelrod DM, Zampi JD. Emerging 3D technologies and applications within congenital
                   heart disease: teach, predict, plan and guide. Future Cardiol 2020;16:695-709.  DOI  PubMed
   61   62   63   64   65   66   67   68   69   70   71