Page 36 - Read Online
P. 36

Page 8 of 10               Antwi-Adjei et al. Vessel Plus 2021;5:35  https://dx.doi.org/10.20517/2574-1209.2021.48

               Availability of data and materials
               All reagents developed in the lab are available upon request.


               Financial support and sponsorship
               This work was supported by NIH R01GM089782 to Ghabrial AS.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2021.

               REFERENCES
               1.       Lampugnani MG, Malinverno M, Dejana E, Rudini N. Endothelial cell disease: emerging knowledge from cerebral cavernous
                   malformations. Curr Opin Hematol 2017;24:256-64.  DOI  PubMed
               2.       Riolo G, Ricci C, Battistini S. Molecular genetic features of cerebral cavernous malformations (CCM) patients: an overall view from
                   genes to endothelial cells. Cells 2021;10:704.  DOI  PubMed  PMC
               3.       Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of
                   CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 2009;18:911-8.  DOI  PubMed  PMC
               4.       Haasdijk RA, Cheng C, Maat-Kievit AJ, Duckers HJ. Cerebral cavernous malformations: from molecular pathogenesis to genetic
                   counselling and clinical management. Eur J Hum Genet 2012;20:134-40.  DOI  PubMed  PMC
               5.       Detter MR, Snellings DA, Marchuk DA. Marchuk. Cerebral cavernous malformations develop through clonal expansion of mutant
                   endothelial cells. Circ Res 2018;123:1143-51.  DOI  PubMed  PMC
               6.       Malinverno M, Maderna C, Abu Taha A, et al. Endothelial cell clonal expansion in the development of cerebral cavernous
                   malformations. Nat Commun 2019;10:2761.  DOI  PubMed  PMC
               7.       Kleaveland B, Zheng X, Liu JJ, et al. Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous
                   malformation protein pathway. Nat Med 2009;15:169-76.  DOI  PubMed  PMC
               8.       Kean MJ, Ceccarelli DF, Goudreault M, et al. Structure-function analysis of core STRIPAK Proteins: a signaling complex implicated
                   in Golgi polarization. J Biol Chem 2011;286:25065-75.  DOI  PubMed  PMC
               9.       Preisinger C, Short B, De Corte V, et al. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration
                   through its substrate 14-3-3zeta. J Cell Biol 2004;164:1009-20.  DOI  PubMed  PMC
               10.      Fidalgo M, Fraile M, Pires A, Force T, Pombo C, Zalvide J. CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly
                   and cell orientation. J Cell Sci 2010;123:1274-84.  DOI  PubMed
               11.      Yoruk B, Gillers BS, Chi NC, Scott IC. Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM
                   vascular disease. Dev Biol 2012;362:121-31.  DOI  PubMed
               12.      Chan AC, Drakos SG, Ruiz OE, et al. Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J
                   Clin Invest 2011;121:1871-81.  DOI  PubMed  PMC
               13.      Zhu Y, Wu Q, Xu JF, et al. Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations. Neurosurg
                   Focus 2010;29:E1.  DOI  PubMed
               14.      Jenny Zhou H, Qin L, Zhang H, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral
                   cavernous malformation. Nat Med 2016;22:1033-42.  DOI  PubMed  PMC
               15.      Zhang Y, Tang W, Zhang H, et al. A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle
                   exocytosis in neutrophils. Dev Cell 2013;27:215-26.  DOI  PubMed  PMC
               16.      Denier C, Labauge P, Bergametti F, et al. Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol
                   2006;60:550-6.  DOI  PubMed
               17.      Riant F, Bergametti F, Fournier HD, et al. CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple
                   meningiomas. Mol Syndromol 2013;4:165-72.  DOI  PubMed  PMC
               18.      Shenkar R, Shi C, Rebeiz T, et al. Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10
                   mutations. Genet Med 2015;17:188-96.  DOI  PubMed  PMC
               19.      Tang AT, Sullivan KR, Hong CC, et al. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation.
                   Sci Transl Med 2019;11:eaaw3521.  DOI  PubMed  PMC
   31   32   33   34   35   36   37   38   39   40   41