Page 35 - Read Online
P. 35

Heng et al. Vessel Plus 2023;7:31  https://dx.doi.org/10.20517/2574-1209.2023.97  Page 13 of 14

                   between plaque location and low oscillating shear stress. Arteriosclerosis 1985;5:293-302.  DOI  PubMed
               25.      Lee SW, Antiga L, Steinman DA. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech
                   Eng 2009;131:061013.  DOI  PubMed
               26.      Meirson T, Orion E, Avrahami I. Numerical analysis of venous external scaffolding technology for saphenous vein grafts. J Biomech
                   2015;48:2090-5.  DOI
               27.      Meirson T, Orion E, Di Mario C, et al. Flow patterns in externally stented saphenous vein grafts and development of intimal
                   hyperplasia. J Thorac Cardiovasc Surg 2015;150:871-9.  DOI
               28.      Amin S, Werner RS, Madsen PL, Krasopoulos G, Taggart DP. Influence of external stenting on venous graft flow parameters in
                   coronary artery bypass grafting: a randomized study. Interact Cardiovasc Thorac Surg 2018;26:926-31.  DOI  PubMed
               29.      Ramachandra AB, Sankaran S, Humphrey JD, Marsden AL. Computational simulation of the adaptive capacity of vein grafts in
                   response to increased pressure. J Biomech Eng 2015;137:031009.  DOI  PubMed  PMC
               30.      Ramachandra AB, Humphrey JD, Marsden AL. Gradual loading ameliorates maladaptation in computational simulations of vein graft
                   growth and remodelling. J R Soc Interface 2017;14:20160995.  DOI  PubMed  PMC
               31.      Ramachandra AB, Wang H, Wnorowski A, et al. Biodegradable external wrapping promotes favorable adaptation in an ovine vein
                   graft model. Acta Biomater 2022;151:414-25.  DOI  PubMed  PMC
               32.      Longchamp A, Alonso F, Dubuis C, et al. The use of external mesh reinforcement to reduce intimal hyperplasia and preserve the
                   structure of human saphenous veins. Biomaterials 2014;35:2588-99.  DOI
               33.      Ben-gal Y, Taggart DP, Williams MR, et al. Expandable external support device to improve Saphenous Vein Graft Patency after
                   CABG. J Cardiothorac Surg 2013;8:122.  DOI  PubMed  PMC
               34.      Sato A, Kawamoto S, Watanabe M, et al. A novel biodegradable external mesh stent improved long-term patency of vein grafts by
                   inhibiting intimal–medial hyperplasia in an experimental canine model. Gen Thorac Cardiovasc Surg 2016;64:1-9.  DOI
               35.      El-kurdi MS, Hong Y, Stankus JJ, Soletti L, Wagner WR, Vorp DA. Transient elastic support for vein grafts using a constricting
                   microfibrillar polymer wrap. Biomaterials 2008;29:3213-20.  DOI  PubMed  PMC
               36.      El-kurdi M, Soletti L, Mcgrath J, et al. Functional remodeling of an electrospun polydimethylsiloxane-based polyether urethane
                   external vein graft support device in an ovine model. J Biomed Mater Res 2019;107:2135-49.  DOI  PubMed  PMC
               37.      Yasuda S, Goda M, Shibuya T, et al. An appropriately sized soft polyester external stent prevents enlargement and neointimal
                   hyperplasia of a saphenous vein graft in a canine model. Artif Organs 2019;43:577-83.  DOI
               38.      Abbasi K, Shalileh K, Anvari MS, et al. Perivascular nitric oxide delivery to saphenous vein grafts prevents graft stenosis after
                   coronary artery bypass grafting: a novel sheep model. Cardiology 2011;118:8-15.  DOI
               39.      Handa M, Li W, Morioka K, Takamori A, Yamada N, Ihaya A. Adventitial delivery of platelet-derived endothelial cell growth factor
                   gene prevented intimal hyperplasia of vein graft. J Vasc Surg 2008;48:1566-74.  DOI
               40.      Nishio H, Masumoto H, Sakamoto K, Yamazaki K, Ikeda T, Minatoya K. MicroRNA-145-loaded poly(lactic-co-glycolic acid)
                   nanoparticles attenuate venous intimal hyperplasia in a rabbit model. J Thorac Cardiovasc Surg 2019;157:2242-51.  DOI
               41.      Kahraman N, Yumun G, Gücü A, et al. Administration of perivascular cyanoacrylate for the prevention of cellular damage in
                   saphenous vein grafts: an experimental model. Cardiovasc J Afr 2016;27:159-63.  DOI  PubMed  PMC
               42.      Dai L, Gao M, Gu C, Zhang F, Yu Y. Perivenous application of cyanoacrylate tissue sealants reduces intimal and medial thickening of
                   the vein graft and inflammatory responses in a rabbit model of carotid artery bypass grafting. Eur J Cardiothorac Surg 2016;49:675-
                   81.  DOI
               43.      Bahcivan M, Yucel S, Kefeli M, Gol MK, Can B, Keceligil HT. Inhibition of vein graft intimal hyperplasia by periadventitial
                   application of hyaluronic acid-carboxymethyl cellulose: an experimental study. Scand Cardiovasc J 2008;42:161-5.  DOI
               44.      Salinas HM, Khan SI, Mccormack MC, et al. Prevention of vein graft intimal hyperplasia with photochemical tissue passivation. J
                   Vasc Surg 2017;65:190-6.  DOI
               45.      Alexander JH, Hafley G, Harrington RA, et al; PREVENT IV Investigators. Efficacy and safety of edifoligide, an E2F transcription
                   factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized
                   controlled trial. JAMA 2005;294:2446-54.  DOI
               46.      Lopes RD, Williams JB, Mehta RH, et al. Edifoligide and long-term outcomes after coronary artery bypass grafting: PRoject of ex-
                   vivo vein graft ENgineering via transfection IV (PREVENT IV) 5-year results. Am Heart J 2012;164:379-86.e1.  DOI  PubMed  PMC
               47.      Murphy GJ, Newby AC, Jeremy JY, Baumbach A, Angelini GD. A randomized trial of an external Dacron sheath for the prevention of
                   vein graft disease: the extent study. J Thorac Cardiovasc Surg 2007;134:504-5.  DOI  PubMed
               48.      Schoettler J, Jussli-melchers J, Grothusen C, et al. Highly flexible nitinol mesh to encase aortocoronary saphenous vein grafts: first
                   clinical experiences and angiographic results nine months postoperatively. Interact Cardiovasc Thorac Surg 2011;13:396-400.  DOI
               49.      Inderbitzin DT, Bremerich J, Matt P, Grapow MT, Eckstein FS, Reuthebuch O. One-year patency control and risk analysis of eSVS®-
                   mesh-supported coronary saphenous vein grafts. J Cardiothorac Surg 2015;10:108.  DOI  PubMed  PMC
               50.      Taggart DP, Ben Gal Y, Lees B, et al. A randomized trial of external stenting for saphenous vein grafts in coronary artery bypass
                   grafting. Ann Thorac Surg 2015;99:2039-45.  DOI
               51.      Taggart DP, Amin S, Djordjevic J, et al. A prospective study of external stenting of saphenous vein grafts to the right coronary artery:
                   the VEST II study. Eur J Cardiothorac Surg 2017;51:952-8.  DOI
               52.      Taggart DP, Webb CM, Desouza A, et al. Long-term performance of an external stent for saphenous vein grafts: the VEST IV trial. J
                   Cardiothorac Surg 2018;13:117.  DOI  PubMed  PMC
   30   31   32   33   34   35   36   37   38   39   40