Page 203 - Read Online
P. 203

Harik et al. Vessel Plus 2023;7:30  https://dx.doi.org/10.20517/2574-1209.2023.124  Page 15 of 16

               53.       Gaudino M, Audisio K, Rahouma M, et al. Comparison of long-term clinical outcomes of skeletonized vs pedicled internal thoracic
                    artery harvesting techniques in the arterial revascularization trial. JAMA Cardiol 2021;6:1380-6.  DOI
               54.       Robinson BM, Paterson HS, Naidoo R, Dhurandhar V, Denniss AR. Bilateral internal thoracic artery composite Y grafts: analysis of
                    464 angiograms in 296 patients. Ann Thorac Surg 2016;101:974-80.  DOI  PubMed
               55.       Bakay C, Onan B, Korkmaz AA, Onan IS, Özkara A. Sequential in situ left internal thoracic artery grafting to the circumflex and
                    right coronary artery areas. Ann Thorac Surg 2013;95:63-70.  DOI
               56.       Ohira S, Doi K, Okawa K, et al. Safety and efficacy of sequential left internal thoracic artery grafting to left circumflex area. Ann
                    Thorac Surg 2016;102:766-73.  DOI
               57.       Ji Q, Shi Y, Xia L, et al. Revascularization of left coronary system using a skeletonized left internal mammary artery - sequential vs.
                    separate grafting. Circ J 2017;82:102-9.  DOI
               58.       Glineur D, Rahouma M, Grau JB, et al. FFR cutoff by arterial graft configuration and location: IMPAG trial insights. JACC
                    Cardiovasc Interv 2020;13:143-4.  DOI
               59.       Casselman FP, La Meir M, Cammu G, et al. Initial experience with an endoscopic radial artery harvesting technique. J Thorac
                    Cardiovasc Surg 2004;128:463-6.  DOI
               60.       Ferdinand FD, MacDonald JK, Balkhy HH, et al. Endoscopic conduit harvest in coronary artery bypass grafting surgery: an ISMICS
                    systematic review and consensus conference statements. Innovations 2017;12:301-19.  DOI
               61.       Kiaii BB, Swinamer SA, Fox SA, Stitt L, Quantz MA, Novick RJ. A prospective randomized study of endoscopic versus
                    conventional harvesting of the radial artery. Innovations 2017;12:231-8.  DOI  PubMed
               62.       Shapira OM, Eskenazi BR, Anter E, et al. Endoscopic versus conventional radial artery harvest for coronary artery bypass grafting:
                    functional and histologic assessment of the conduit. J Thorac Cardiovasc Surg 2006;131:388-94.  DOI
               63.       Medalion B, Tobar A, Yosibash Z, et al. Vasoreactivity and histology of the radial artery: comparison of open versus endoscopic
                    approaches. Eur J Cardiothorac Surg 2008;34:845-9.  DOI
               64.       Gaudino MF, Lorusso R, Ohmes LB, et al. Open radial artery harvesting better preserves endothelial function compared to the
                    endoscopic approach. Interact Cardiovasc Thorac Surg 2019;29:561-7.  DOI  PubMed  PMC
               65.       Rahouma M, Kamel M, Benedetto U, et al. Endoscopic versus open radial artery harvesting: a meta-analysis of randomized
                    controlled and propensity matched studies. J Card Surg 2017;32:334-41.  DOI
               66.       Kristic  I,  Lukenda  J.  Radial  artery  spasm  during  transradial  coronary  procedures.  Available  from:  https://www.
                    hmpgloballearningnetwork.com/site/jic/articles/radial-artery-spasm-during-transradial-coronary-procedures [Last accessed on 28 Nov
                    2023].
               67.       Gaudino M, Bakaeen FG, Sandner S, et al. Expert systematic review on the choice of conduits for coronary artery bypass grafting:
                    endorsed by the European Association for Cardio-Thoracic Surgery (EACTS) and The Society of Thoracic Surgeons (STS). Eur J
                    Cardiothorac Surg 2023;64:ezad163.  DOI
               68.       Gaudino M, Alessandrini F, Pragliola C, et al. Effect of target artery location and severity of stenosis on mid-term patency of aorta-
                    anastomosed vs. internal thoracic artery-anastomosed radial artery grafts. Eur J Cardiothorac Surg 2004;25:424-8.  DOI
               69.       van Son JA, Smedts F, Vincent JG, van Lier HJ, Kubat K. Comparative anatomic studies of various arterial conduits for myocardial
                    revascularization. J Thorac Cardiovasc Surg 1990;99:703-7.  PubMed
               70.       Yie K, Na CY, Oh SS, Kim JH, Shinn SH, Seo HJ. Angiographic results of the radial artery graft patency according to the degree of
                    native coronary stenosis. Eur J Cardiothorac Surg 2008;33:341-8.  DOI
               71.       Gaudino M, Tondi P, Benedetto U, et al. Radial artery as a coronary artery bypass conduit: 20-year results. J Am Coll Cardiol
                    2016;68:603-10.  DOI
               72.       Kasahara H, Shin H, Takahashi T, Murata S, Mori M. Comparison of patency of single and sequential radial artery grafting in
                    coronary artery bypass. Interact Cardiovasc Thorac Surg 2022;34:515-22.  DOI  PubMed  PMC
               73.       Hosono M, Murakami T, Hirai H, Sasaki Y, Suehiro S, Shibata T. The risk factor analysis for the late graft failure of radial artery
                    graft in coronary artery bypass grafting. Ann Thorac Cardiovasc Surg 2019;25:32-8.  DOI  PubMed  PMC
               74.       Nakajima H, Kobayashi J, Toda K, et al. A 10-year angiographic follow-up of competitive flow in sequential and composite arterial
                    grafts. Eur J Cardiothorac Surg 2011;40:399-404.  DOI
               75.       Chardigny C, Jebara VA, Acar J, et al. Vasoreactivity of the radial artery. Comparison with the internal mammary and gastroepiploic
                    arteries with implications for coronary artery surgery. Circulation 1993;88:II115-27.  PubMed
               76.       Gaudino M, Glieca F, Luciani N, Alessandrini F, Possati G. Clinical and angiographic effects of chronic calcium channel blocker
                    therapy continued beyond first postoperative year in patients with radial artery grafts: results of a prospective randomized
                    investigation. Circulation 2001;104:I64-7.  PubMed
               77.       Gaudino M, Luciani N, Nasso G, Salica A, Canosa C, Possati G. Is postoperative calcium channel blocker therapy needed in patients
                    with radial artery grafts? J Thorac Cardiovasc Surg 2005;129:532-5.  DOI  PubMed
               78.       Miwa S, Desai N, Koyama T, Chan E, Cohen EA, Fremes SE; Radial Artery Patency Study Investigators. Radial artery angiographic
                    string sign: clinical consequences and the role of pharmacologic therapy. Ann Thorac Surg 2006;81:112-8; discussion 119.  DOI
                    PubMed
               79.       Gaudino M, Benedetto U, Fremes SE, et al. Effect of calcium-channel blocker therapy on radial artery grafts after coronary bypass
                    surgery. J Am Coll Cardiol 2019;73:2299-306.  DOI
               80.       Bakaeen FG, Ghandour H, Ravichandren K, et al. Right internal thoracic artery patency is affected more by target choice than conduit
                    configuration. Ann Thorac Surg 2022;114:458-66.  DOI
   198   199   200   201   202   203   204   205   206   207   208