Page 203 - Read Online
P. 203
Harik et al. Vessel Plus 2023;7:30 https://dx.doi.org/10.20517/2574-1209.2023.124 Page 15 of 16
53. Gaudino M, Audisio K, Rahouma M, et al. Comparison of long-term clinical outcomes of skeletonized vs pedicled internal thoracic
artery harvesting techniques in the arterial revascularization trial. JAMA Cardiol 2021;6:1380-6. DOI
54. Robinson BM, Paterson HS, Naidoo R, Dhurandhar V, Denniss AR. Bilateral internal thoracic artery composite Y grafts: analysis of
464 angiograms in 296 patients. Ann Thorac Surg 2016;101:974-80. DOI PubMed
55. Bakay C, Onan B, Korkmaz AA, Onan IS, Özkara A. Sequential in situ left internal thoracic artery grafting to the circumflex and
right coronary artery areas. Ann Thorac Surg 2013;95:63-70. DOI
56. Ohira S, Doi K, Okawa K, et al. Safety and efficacy of sequential left internal thoracic artery grafting to left circumflex area. Ann
Thorac Surg 2016;102:766-73. DOI
57. Ji Q, Shi Y, Xia L, et al. Revascularization of left coronary system using a skeletonized left internal mammary artery - sequential vs.
separate grafting. Circ J 2017;82:102-9. DOI
58. Glineur D, Rahouma M, Grau JB, et al. FFR cutoff by arterial graft configuration and location: IMPAG trial insights. JACC
Cardiovasc Interv 2020;13:143-4. DOI
59. Casselman FP, La Meir M, Cammu G, et al. Initial experience with an endoscopic radial artery harvesting technique. J Thorac
Cardiovasc Surg 2004;128:463-6. DOI
60. Ferdinand FD, MacDonald JK, Balkhy HH, et al. Endoscopic conduit harvest in coronary artery bypass grafting surgery: an ISMICS
systematic review and consensus conference statements. Innovations 2017;12:301-19. DOI
61. Kiaii BB, Swinamer SA, Fox SA, Stitt L, Quantz MA, Novick RJ. A prospective randomized study of endoscopic versus
conventional harvesting of the radial artery. Innovations 2017;12:231-8. DOI PubMed
62. Shapira OM, Eskenazi BR, Anter E, et al. Endoscopic versus conventional radial artery harvest for coronary artery bypass grafting:
functional and histologic assessment of the conduit. J Thorac Cardiovasc Surg 2006;131:388-94. DOI
63. Medalion B, Tobar A, Yosibash Z, et al. Vasoreactivity and histology of the radial artery: comparison of open versus endoscopic
approaches. Eur J Cardiothorac Surg 2008;34:845-9. DOI
64. Gaudino MF, Lorusso R, Ohmes LB, et al. Open radial artery harvesting better preserves endothelial function compared to the
endoscopic approach. Interact Cardiovasc Thorac Surg 2019;29:561-7. DOI PubMed PMC
65. Rahouma M, Kamel M, Benedetto U, et al. Endoscopic versus open radial artery harvesting: a meta-analysis of randomized
controlled and propensity matched studies. J Card Surg 2017;32:334-41. DOI
66. Kristic I, Lukenda J. Radial artery spasm during transradial coronary procedures. Available from: https://www.
hmpgloballearningnetwork.com/site/jic/articles/radial-artery-spasm-during-transradial-coronary-procedures [Last accessed on 28 Nov
2023].
67. Gaudino M, Bakaeen FG, Sandner S, et al. Expert systematic review on the choice of conduits for coronary artery bypass grafting:
endorsed by the European Association for Cardio-Thoracic Surgery (EACTS) and The Society of Thoracic Surgeons (STS). Eur J
Cardiothorac Surg 2023;64:ezad163. DOI
68. Gaudino M, Alessandrini F, Pragliola C, et al. Effect of target artery location and severity of stenosis on mid-term patency of aorta-
anastomosed vs. internal thoracic artery-anastomosed radial artery grafts. Eur J Cardiothorac Surg 2004;25:424-8. DOI
69. van Son JA, Smedts F, Vincent JG, van Lier HJ, Kubat K. Comparative anatomic studies of various arterial conduits for myocardial
revascularization. J Thorac Cardiovasc Surg 1990;99:703-7. PubMed
70. Yie K, Na CY, Oh SS, Kim JH, Shinn SH, Seo HJ. Angiographic results of the radial artery graft patency according to the degree of
native coronary stenosis. Eur J Cardiothorac Surg 2008;33:341-8. DOI
71. Gaudino M, Tondi P, Benedetto U, et al. Radial artery as a coronary artery bypass conduit: 20-year results. J Am Coll Cardiol
2016;68:603-10. DOI
72. Kasahara H, Shin H, Takahashi T, Murata S, Mori M. Comparison of patency of single and sequential radial artery grafting in
coronary artery bypass. Interact Cardiovasc Thorac Surg 2022;34:515-22. DOI PubMed PMC
73. Hosono M, Murakami T, Hirai H, Sasaki Y, Suehiro S, Shibata T. The risk factor analysis for the late graft failure of radial artery
graft in coronary artery bypass grafting. Ann Thorac Cardiovasc Surg 2019;25:32-8. DOI PubMed PMC
74. Nakajima H, Kobayashi J, Toda K, et al. A 10-year angiographic follow-up of competitive flow in sequential and composite arterial
grafts. Eur J Cardiothorac Surg 2011;40:399-404. DOI
75. Chardigny C, Jebara VA, Acar J, et al. Vasoreactivity of the radial artery. Comparison with the internal mammary and gastroepiploic
arteries with implications for coronary artery surgery. Circulation 1993;88:II115-27. PubMed
76. Gaudino M, Glieca F, Luciani N, Alessandrini F, Possati G. Clinical and angiographic effects of chronic calcium channel blocker
therapy continued beyond first postoperative year in patients with radial artery grafts: results of a prospective randomized
investigation. Circulation 2001;104:I64-7. PubMed
77. Gaudino M, Luciani N, Nasso G, Salica A, Canosa C, Possati G. Is postoperative calcium channel blocker therapy needed in patients
with radial artery grafts? J Thorac Cardiovasc Surg 2005;129:532-5. DOI PubMed
78. Miwa S, Desai N, Koyama T, Chan E, Cohen EA, Fremes SE; Radial Artery Patency Study Investigators. Radial artery angiographic
string sign: clinical consequences and the role of pharmacologic therapy. Ann Thorac Surg 2006;81:112-8; discussion 119. DOI
PubMed
79. Gaudino M, Benedetto U, Fremes SE, et al. Effect of calcium-channel blocker therapy on radial artery grafts after coronary bypass
surgery. J Am Coll Cardiol 2019;73:2299-306. DOI
80. Bakaeen FG, Ghandour H, Ravichandren K, et al. Right internal thoracic artery patency is affected more by target choice than conduit
configuration. Ann Thorac Surg 2022;114:458-66. DOI