Page 145 - Read Online
P. 145
Broadwin et al. Vessel Plus 2023;7:25 https://dx.doi.org/10.20517/2574-1209.2023.103 Page 13 of 14
REFERENCES
1. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J
Am Coll Cardiol 2017;70:1-25. DOI PubMed PMC
2. National center for chronic disease prevention and health promotion, division for heart disease and stroke prevention. Available from:
https://www.cdc.gov/heartdisease/facts.htm [Last accessed on 30 Oct 2023].
3. Andersson C, Johnson AD, Benjamin EJ, Levy D, Vasan RS. 70-year legacy of the framingham heart study. Nat Rev Cardiol
2019;16:687-98. DOI PubMed
4. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the
american college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation 2022;145:e895-
e1032. DOI
5. Ordovás JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol 2010;7:510-9. DOI PubMed PMC
6. Wallace RG, Twomey LC, Custaud MA, et al. The role of epigenetics in cardiovascular health and ageing: a focus on physical activity
and nutrition. Mech Ageing Dev 2018;174:76-85. DOI
7. Bowen KJ, Sullivan VK, Kris-Etherton PM, Petersen KS. Nutrition and cardiovascular disease-an update. Curr Atheroscler Rep
2018;20:8. DOI PubMed
8. Luo X, Hu Y, Shen J, et al. Integrative analysis of DNA methylation and gene expression reveals key molecular signatures in acute
myocardial infarction. Clin Epigenetics 2022;14:46. DOI PubMed PMC
9. Li J, Zhu X, Yu K, et al. Genome-wide analysis of DNA methylation and acute coronary syndrome. Circ Res 2017;120:1754-67. DOI
10. Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, et al. DNA methylation biomarkers of myocardial infarction and cardiovascular
disease. Clin Epigenetics 2021;13:86. DOI PubMed PMC
11. Schiano C, Balbi C, Burrello J, et al. De novo DNA methylation induced by circulating extracellular vesicles from acute coronary
syndrome patients. Atherosclerosis 2022;354:41-52. DOI
12. Scrimgeour LA, Potz BA, Aboul Gheit A, et al. Intravenous injection of extracellular vesicles to treat chronic myocardial ischemia.
PLoS One 2020;15:e0238879. DOI PubMed PMC
13. Aboulgheit A, Potz BA, Scrimgeour LA, et al. Effects of high fat versus normal diet on extracellular vesicle-induced angiogenesis in a
swine model of chronic myocardial ischemia. J Am Heart Assoc 2021;10:e017437. DOI PubMed PMC
14. Willis GR, Reis M, Gheinani AH, et al. Extracellular vesicles protect the neonatal lung from hyperoxic injury through the epigenetic
and transcriptomic reprogramming of myeloid cells. Am J Respir Crit Care Med 2021;204:1418-32. DOI PubMed PMC
15. Aboulgheit A, Karbasiafshar C, Sabra M, et al. Extracellular vesicles improve diastolic function and substructure in normal and high-
fat diet models of chronic myocardial ischemia. J Thorac Cardiovasc Surg 2022;164:e371-84. DOI PubMed PMC
16. Potz BA, Scrimgeour LA, Pavlov VI, Sodha NR, Abid MR, Sellke FW. Extracellular vesicle injection improves myocardial function
and increases angiogenesis in a swine model of chronic ischemia. J Am Heart Assoc 2018;7:e008344. DOI PubMed PMC
17. Broadwin M, Harris DD, Sabe SA, et al. Impaired cardiac glycolysis and glycogen depletion are linked to poor myocardial outcomes
in juvenile male swine with metabolic syndrome and ischemia. Physiol Rep 2023;11:e15742. DOI PubMed PMC
18. Sabe SA, Harris DD, Broadwin M, et al. Sitagliptin therapy improves myocardial perfusion and arteriolar collateralization in
chronically ischemic myocardium: a pilot study. Physiol Rep 2023;11:e15744. DOI PubMed PMC
19. Potz BA, Sabe SA, Scrimgeour LA, et al. Calpain inhibition decreases oxidative stress via mitochondrial regulation in a swine model
of chronic myocardial ischemia. Free Radic Biol Med 2023;208:700-7. DOI PubMed PMC
20. Aghagoli G, Del Re A, Yano N, et al. Methylome of skeletal muscle tissue in patients with hypertension and diabetes undergoing
cardiopulmonary bypass. Epigenomics 2021;13:1853-66. DOI PubMed PMC
21. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available from: http://www.bioinformatics.
babraham.ac.uk/projects/fastqc [Last accessed on 30 Oct 2023].
22. Krueger F. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some
extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. 2012. Available from: http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/ [Last accessed on 30 Oct 2023].
23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114-20. DOI
PubMed PMC
24. Krueger F. Bismark: A tool to map bisulfite converted sequence reads and determine cytosine methylation states. 2010. Available
from: http://www.bioinformatics.babraham.ac.uk/projects/bismark/ [Last accessed on 30 Oct 2023].
25. Chen Y, Pal B, Visvader JE, Smyth GK. Differential methylation analysis of reduced representation bisulfite sequencing experiments
using edgeR. F1000Res 2017;6:2055. DOI PubMed PMC
26. Li D, Yan J, Yuan Y, et al. Genome-wide DNA methylome alterations in acute coronary syndrome. Int J Mol Med 2018;41:220-32.
DOI PubMed PMC
27. Palou-Márquez G, Subirana I, Nonell L, Fernández-Sanlés A, Elosua R. DNA methylation and gene expression integration in
cardiovascular disease. Clin Epigenetics 2021;13:75. DOI PubMed PMC
28. Mezger STP, Mingels AMA, Soulié M, et al. Protein alterations in cardiac ischemia/reperfusion revealed by spatial-omics. Int J Mol
Sci 2022;23:13847. DOI PubMed PMC
29. Kuppe C, Ramirez Flores RO, Li Z, et al. Spatial multi-omic map of human myocardial infarction. Nature 2022;608:766-77. DOI
PubMed PMC