Page 47 - Read Online
P. 47
Liu et al. Soft Sci. 2025, 5, 7 https://dx.doi.org/10.20517/ss.2024.69 Page 21 of 25
DECLARATIONS
Authors’ contributions
Project administration, conceptualization, investigation, writing - review and editing: He, M., Qin, S., Song,
P.
Investigation, writing - review and editing: Zhou, D., Huang, F., Shi, Y.
Writing - original draft: Liu, S.
Availability of data and materials
Not applicable.
Financial support and sponsorship
The authors acknowledge financial support from the National Natural Science Foundation of China (Grant
No. 52163011), the Youth Talent Program of Guizhou Education Department (Qianjiaoji[2024]338), and
the Science and Technology Project of Guizhou Province (QianKeHe ZhiCheng[2023] General 146;
QianKeHe Pingtai Rencai CXTD[2023]012).
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2025.
REFERENCES
1. Zhuo, L.; Shen, D.; Gou, P.; et al. Anisotropic high-strength polyimide-based electromagnetic interference shielding foam based on
cation-π interaction. Chem. Eng. J. 2023, 477, 146992. DOI
2. Chakraborty, T.; Saha, S.; Gupta, K.; et al. An effective microwave absorber using multi-layer design of carbon allotrope based Co Z
2
hexaferrite-polymer nanocomposite film for EMI shielding applications. Chem. Eng. J. 2024, 487, 150323. DOI
3. Palsaniya, S.; Mukherji, S. Enhanced dielectric and electrostatic energy density of electronic conductive organic-metal oxide
frameworks at ultra-high frequency. Carbon 2022, 196, 749-62. DOI
4. Liu, S.; Chevali, V. S.; Xu, Z.; Hui, D.; Wang, H. A review of extending performance of epoxy resins using carbon nanomaterials.
Compos. Part. B. Eng. 2018, 136, 197-214. DOI
5. Yan, Y.; Zhang, K.; Qin, G.; et al. Phase engineering on MoS to realize dielectric gene engineering for enhancing microwave
2
absorbing performance. Adv. Funct. Mater. 2024, 34, 2316338. DOI
6. Gao, Z.; Iqbal, A.; Hassan, T.; Hui, S.; Wu, H.; Koo, C. M. Tailoring built-in electric field in a self-assembled zeolitic imidazolate
framework/MXene nanocomposites for microwave absorption. Adv. Mater. 2024, 36, e2311411. DOI
7. Zhang, S.; Pei, Y.; Zhao, Z.; Guan, C.; Wu, G. Simultaneous manipulation of polarization relaxation and conductivity toward self-
repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. J. Colloid. Interface. Sci.
2023, 630, 453-64. DOI PubMed
8. Li, Z.; Zhu, H.; Rao, L.; et al. Wrinkle structure regulating electromagnetic parameters in constructed core-shell ZnFe O @PPy
2
4
microspheres as absorption materials. Small 2024, 20, e2308581. DOI
9. Ma, L.; Wei, L.; Hamidinejad, M.; Park, C. B. Layered polymer composite foams for broadband ultra-low reflectance EMI shielding:
a computationally guided fabrication approach. Mater. Horiz. 2023, 10, 4423-37. DOI
10. Xu, M.; Wei, L.; Ma, L.; et al. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave
absorption. J. Mater. Sci. Technol. 2022, 117, 215-24. DOI
11. Guo, J.; Li, X.; Chen, Z.; et al. Magnetic NiFe O /polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J.
2 4
Mater. Sci. Technol. 2022, 108, 64-72. DOI
12. Sun, Y.; Han, X.; Guo, P.; et al. Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-

