Page 167 - Read Online
P. 167

Page 28 of 31                            Lee et al. Soft Sci 2024;4:38  https://dx.doi.org/10.20517/ss.2024.36

               52.       Yin D, Feng J, Ma R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable
                    buckling process. Nat Commun 2016;7:11573.  DOI  PubMed  PMC
               53.       Hartmann F, Jakešová M, Mao G, et al. Scalable microfabrication of folded parylene-based conductors for stretchable electronics.
                    Adv Electron Mater 2021;7:2001236.  DOI
               54.       Hyun DC, Park M, Park C, et al. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable
                    conductive electrodes. Adv Mater 2011;23:2946-50.  DOI  PubMed
               55.       Yu Y, Fang Z, Luo Y, et al. Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films.
                    Nanoscale 2020;12:24259-65.  DOI  PubMed
               56.       Seok S, Park H, Kim J. Analysis of experimental biaxial surface wrinkling pattern based on direct 3D numerical simulation.
                    Micromachines 2024;15:543.  DOI  PubMed  PMC
               57.       Brooks AK, Chakravarty S, Ali M, Yadavalli VK. Kirigami-inspired biodesign for applications in healthcare. Adv Mater
                    2022;34:e2109550.  DOI  PubMed
               58.       Tao J, Khosravi H, Deshpande V, Li S. Engineering by cuts: how Kirigami principle enables unique mechanical properties and
                    functionalities. Adv Sci 2022;10:e2204733.  DOI  PubMed  PMC
               59.       Baldwin A, Meng E. Kirigami strain sensors microfabricated from thin-film parylene C. J Microelectromech Syst 2018;27:1082-8.
                    DOI
               60.       Morikawa Y, Yamagiwa S, Sawahata H, Numano R, Koida K, Kawano T. Donut-shaped stretchable Kirigami: enabling electronics to
                    integrate with the deformable muscle. Adv Healthc Mater 2019;8:e1900939.  DOI  PubMed
               61.       Zhang S, Yang C, Qi Z, et al. Laser patterned graphene pressure sensor with adjustable sensitivity in an ultrawide response range.
                    Nanotechnology 2024;35:365503.  DOI  PubMed
               62.       Park R, Lee DH, Koh CS, et al. Laser-assisted structuring of graphene films with biocompatible liquid crystal polymer for skin/brain-
                    interfaced electrodes. Adv Healthc Mater 2024;13:e2301753.  DOI  PubMed  PMC
               63.       Biswas RK, Farid N, Bhatt BB, Gupta D, O’Connor GM, Scully P. Femtosecond infra-red laser carbonization and ablation of
                    polyimide for fabrication of Kirigami inspired strain sensor. J Phys D Appl Phys 2023;56:085101.  DOI
               64.       Chen J, Shi Y, Ying B, et al. Kirigami-enabled stretchable laser-induced graphene heaters for wearable thermotherapy. Mater Horiz
                    2024;11:2010-20.  DOI  PubMed
               65.       Lee HU, Park C, Jin J, Kim SW. A stretchable vertically stacked microsupercapacitor with kirigami-bridged island structure: MnO /
                                                                                                         2
                    graphene/poly(3,4-ethylenedioxythiophene) nanocomposite electrode through pen lithography. J Power Sources 2020;453:227898.
                    DOI
               66.       Hwang DG, Bartlett MD. Tunable mechanical metamaterials through hybrid Kirigami structures. Sci Rep 2018;8:3378.  DOI
                    PubMed  PMC
               67.       Guan YS, Zhang Z, Tang Y, Yin J, Ren S. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000%
                    stretchability. Adv Mater 2018;30:e1706390.  DOI  PubMed
               68.       Won P, Park JJ, Lee T, et al. Stretchable and transparent Kirigami conductor of nanowire percolation network for electronic skin
                    applications. Nano Lett 2019;19:6087-96.  DOI  PubMed
               69.       Rao Z, Lu Y, Li Z, et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a Kirigami design. Nat Electron
                    2021;4:513-21.  DOI
               70.       Xu K, Lu Y, Honda S, Arie T, Akita S, Takei K. Highly stable Kirigami-structured stretchable strain sensors for perdurable wearable
                    electronics. J Mater Chem C 2019;7:9609-17.  DOI
               71.       Sedal A, Memar AH, Liu T, Menguc Y, Corson N. Design of deployable soft robots through plastic deformation of Kirigami
                    structures. IEEE Robot Autom Lett 2020;5:2272-9.  DOI
               72.       Zhang Z, Yu Y, Tang Y, et al. Kirigami-inspired stretchable conjugated electronics. Adv Electron Mater 2020;6:1900929.  DOI
               73.       An N, Domel AG, Zhou J, Rafsanjani A, Bertoldi K. Programmable hierarchical Kirigami. Adv Funct Mater 2020;30:1906711.  DOI
               74.       Khosravi H, Iannucci SM, Li S. Pneumatic soft actuators with Kirigami skins. Front Robot AI 2021;8:749051.  DOI  PubMed  PMC
               75.       Rafsanjani A, Bertoldi K. Buckling-induced Kirigami. Phys Rev Lett 2017;118:084301.  DOI  PubMed
               76.       Groeger D, Steimle J. LASEC: Instant fabrication of stretchable circuits using a laser cutter. In: Proceedings of the 2019 CHI
                    Conference on Human Factors in Computing Systems. ACM; 2019. pp. 1-14.  DOI
               77.       Guo Z, Yu Y, Zhu W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for bodyNET
                    application. Adv Energy Mater 2022;12:2102993.  DOI
               78.       Jeong MW, Ma JH, Shin JS, et al. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer
                    light-emitting diodes. Sci Adv 2023;9:eadh1504.  DOI  PubMed  PMC
               79.       Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater
                    2020;32:e1902743.  DOI  PubMed
               80.       Zhang Z, Wang W, Jiang Y, et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022;603:624-
                    30.  DOI  PubMed
               81.       Liu J, Wang J, Zhang Z, et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat Commun
                    2020;11:3362.  DOI  PubMed  PMC
               82.       Dong Z, Ren X, Jia B, et al. Composite patch with negative Poisson’s ratio mimicking cardiac mechanical properties: design,
                    experiment and simulation. Mater Today Bio 2024;26:101098.  DOI  PubMed  PMC
   162   163   164   165   166   167   168   169   170   171   172