Page 167 - Read Online
P. 167
Page 28 of 31 Lee et al. Soft Sci 2024;4:38 https://dx.doi.org/10.20517/ss.2024.36
52. Yin D, Feng J, Ma R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable
buckling process. Nat Commun 2016;7:11573. DOI PubMed PMC
53. Hartmann F, Jakešová M, Mao G, et al. Scalable microfabrication of folded parylene-based conductors for stretchable electronics.
Adv Electron Mater 2021;7:2001236. DOI
54. Hyun DC, Park M, Park C, et al. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable
conductive electrodes. Adv Mater 2011;23:2946-50. DOI PubMed
55. Yu Y, Fang Z, Luo Y, et al. Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films.
Nanoscale 2020;12:24259-65. DOI PubMed
56. Seok S, Park H, Kim J. Analysis of experimental biaxial surface wrinkling pattern based on direct 3D numerical simulation.
Micromachines 2024;15:543. DOI PubMed PMC
57. Brooks AK, Chakravarty S, Ali M, Yadavalli VK. Kirigami-inspired biodesign for applications in healthcare. Adv Mater
2022;34:e2109550. DOI PubMed
58. Tao J, Khosravi H, Deshpande V, Li S. Engineering by cuts: how Kirigami principle enables unique mechanical properties and
functionalities. Adv Sci 2022;10:e2204733. DOI PubMed PMC
59. Baldwin A, Meng E. Kirigami strain sensors microfabricated from thin-film parylene C. J Microelectromech Syst 2018;27:1082-8.
DOI
60. Morikawa Y, Yamagiwa S, Sawahata H, Numano R, Koida K, Kawano T. Donut-shaped stretchable Kirigami: enabling electronics to
integrate with the deformable muscle. Adv Healthc Mater 2019;8:e1900939. DOI PubMed
61. Zhang S, Yang C, Qi Z, et al. Laser patterned graphene pressure sensor with adjustable sensitivity in an ultrawide response range.
Nanotechnology 2024;35:365503. DOI PubMed
62. Park R, Lee DH, Koh CS, et al. Laser-assisted structuring of graphene films with biocompatible liquid crystal polymer for skin/brain-
interfaced electrodes. Adv Healthc Mater 2024;13:e2301753. DOI PubMed PMC
63. Biswas RK, Farid N, Bhatt BB, Gupta D, O’Connor GM, Scully P. Femtosecond infra-red laser carbonization and ablation of
polyimide for fabrication of Kirigami inspired strain sensor. J Phys D Appl Phys 2023;56:085101. DOI
64. Chen J, Shi Y, Ying B, et al. Kirigami-enabled stretchable laser-induced graphene heaters for wearable thermotherapy. Mater Horiz
2024;11:2010-20. DOI PubMed
65. Lee HU, Park C, Jin J, Kim SW. A stretchable vertically stacked microsupercapacitor with kirigami-bridged island structure: MnO /
2
graphene/poly(3,4-ethylenedioxythiophene) nanocomposite electrode through pen lithography. J Power Sources 2020;453:227898.
DOI
66. Hwang DG, Bartlett MD. Tunable mechanical metamaterials through hybrid Kirigami structures. Sci Rep 2018;8:3378. DOI
PubMed PMC
67. Guan YS, Zhang Z, Tang Y, Yin J, Ren S. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000%
stretchability. Adv Mater 2018;30:e1706390. DOI PubMed
68. Won P, Park JJ, Lee T, et al. Stretchable and transparent Kirigami conductor of nanowire percolation network for electronic skin
applications. Nano Lett 2019;19:6087-96. DOI PubMed
69. Rao Z, Lu Y, Li Z, et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a Kirigami design. Nat Electron
2021;4:513-21. DOI
70. Xu K, Lu Y, Honda S, Arie T, Akita S, Takei K. Highly stable Kirigami-structured stretchable strain sensors for perdurable wearable
electronics. J Mater Chem C 2019;7:9609-17. DOI
71. Sedal A, Memar AH, Liu T, Menguc Y, Corson N. Design of deployable soft robots through plastic deformation of Kirigami
structures. IEEE Robot Autom Lett 2020;5:2272-9. DOI
72. Zhang Z, Yu Y, Tang Y, et al. Kirigami-inspired stretchable conjugated electronics. Adv Electron Mater 2020;6:1900929. DOI
73. An N, Domel AG, Zhou J, Rafsanjani A, Bertoldi K. Programmable hierarchical Kirigami. Adv Funct Mater 2020;30:1906711. DOI
74. Khosravi H, Iannucci SM, Li S. Pneumatic soft actuators with Kirigami skins. Front Robot AI 2021;8:749051. DOI PubMed PMC
75. Rafsanjani A, Bertoldi K. Buckling-induced Kirigami. Phys Rev Lett 2017;118:084301. DOI PubMed
76. Groeger D, Steimle J. LASEC: Instant fabrication of stretchable circuits using a laser cutter. In: Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. ACM; 2019. pp. 1-14. DOI
77. Guo Z, Yu Y, Zhu W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for bodyNET
application. Adv Energy Mater 2022;12:2102993. DOI
78. Jeong MW, Ma JH, Shin JS, et al. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer
light-emitting diodes. Sci Adv 2023;9:eadh1504. DOI PubMed PMC
79. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater
2020;32:e1902743. DOI PubMed
80. Zhang Z, Wang W, Jiang Y, et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022;603:624-
30. DOI PubMed
81. Liu J, Wang J, Zhang Z, et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat Commun
2020;11:3362. DOI PubMed PMC
82. Dong Z, Ren X, Jia B, et al. Composite patch with negative Poisson’s ratio mimicking cardiac mechanical properties: design,
experiment and simulation. Mater Today Bio 2024;26:101098. DOI PubMed PMC

