Page 137 - Read Online
P. 137
Page 30 of 32 Keum et al. Soft Sci 2024;4:34 https://dx.doi.org/10.20517/ss.2024.26
76. Kim Y, Kim J, Kim CY, et al. A modulus-engineered multi-layer polymer film with mechanical robustness for the application to
highly deformable substrate platform in stretchable electronics. Chem Eng J 2022;431:134074. DOI
77. Lee W, Park J. Fatigue effect of stretchable a-InGaZnO TFT on PI/PDMS substrate under repetitive Uni/biaxial elongation stress.
ACS Appl Electron Mater 2022;4:6004-12. DOI
78. Miyakawa M, Tsuji H, Nakata M. Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for
deformable display applications. J Soc Inf Disp 2022;30:699-705. DOI
79. Oh H, Oh JY, Park CW, Pi JE, Yang JH, Hwang CS. High density integration of stretchable inorganic thin film transistors with
excellent performance and reliability. Nat Commun 2022;13:4963. DOI PubMed PMC
80. Song X, Zhang T, Wu L, et al. Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer
substrates. Adv Sci 2022;9:e2105623. DOI PubMed PMC
81. Kang SH, Jo JW, Lee JM, et al. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored
elastic substrates on a large scale. Nat Commun 2024;15:2814. DOI PubMed PMC
82. Huang W, Jiao H, Huang Q, Zhang J, Zhang M. Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically
stretchable transistors. Nanoscale 2020;12:23546-55. DOI
83. Fan L, Wang Q, Huang Q, et al. Stretchable carbon nanotube thin-film transistor arrays realized by a universal transferable-band-aid
method. IEEE Trans Electron Devices 2021;68:5879-85. DOI
84. Nishio Y, Hirotani J, Kishimoto S, Kataura H, Ohno Y. Low-voltage operable and strain-insensitive stretchable all-carbon nanotube
integrated circuits with local strain suppression layer. Adv Elect Mater 2021;7:2000674. DOI
85. Zhang W, Liu Y, Pei X, et al. Stretchable MoS artificial photoreceptors for E-Skin. Adv Funct Mater 2022;32:2107524. DOI
2
86. Koo JH, Kang J, Lee S, et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat Electron
2023;6:137-45. DOI
87. Li Y, Li N, Liu W, et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat
Commun 2023;14:4488. DOI PubMed PMC
88. Mai Y, Cotterell B. On the essential work of ductile fracture in polymers. Int J Fract 1986;32:105-25. DOI
89. Xia Z, Hutchinson JW. Crack patterns in thin films. J Mech Phys Solids 2000;48:1107-31. DOI
90. Alkhadra MA, Root SE, Hilby KM, Rodriquez D, Sugiyama F, Lipomi DJ. Quantifying the fracture behavior of brittle and ductile
thin films of semiconducting polymers. Chem Mater 2017;29:10139-49. DOI
91. Kim SW, Park S, Lee S, et al. Stretchable mesh-patterned organic semiconducting thin films on creased elastomeric substrates. Adv
Funct Mater 2021;31:2010870. DOI
92. Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater
2012;24:2945-86. DOI PubMed
93. Park B, Nam S, Kang Y, et al. Cation doping strategy for improved carrier mobility and stability in metal-oxide Heterojunction thin-
film transistors. Mater Today Electron 2024;8:100090. DOI
94. Chae SH, Yu WJ, Bae JJ, et al. Transferred wrinkled Al O for highly stretchable and transparent graphene-carbon nanotube
3
2
transistors. Nat Mater 2013;12:403-9. DOI PubMed
95. Cai L, Wang C. Carbon nanotube flexible and stretchable electronics. Nanoscale Res Lett 2015;10:1013. DOI PubMed PMC
96. Dai Y, Hu H, Wang M, Xu J, Wang S. Stretchable transistors and functional circuits for human-integrated electronics. Nat Electron
2021;4:17-29. DOI
97. Jeong MW, Ma JH, Shin JS, et al. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer
light-emitting diodes. Sci Adv 2023;9:eadh1504. DOI PubMed PMC
98. Kim JH, Park JW. Intrinsically stretchable organic light-emitting diodes. Sci Adv 2021;7:eabd9715. DOI PubMed PMC
99. Jeon K, Park J. Light-emitting polymer blended with elastomers for stretchable polymer light-emitting diodes. Macromolecules
2022;55:8311-20. DOI
100. Li XC, Yao L, Song W, et al. Intrinsically stretchable electroluminescent elastomers with self-confinement effect for highly efficient
non-blended stretchable OLEDs. Angew Chem Int Ed Engl 2023;62:e202213749. DOI PubMed
101. Liu W, Zhang C, Alessandri R, et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed
fluorescence. Nat Mater 2023;22:737-45. DOI
102. Oh JH, Park JW. Intrinsically stretchable phosphorescent light-emitting materials for stretchable displays. ACS Appl Mater Interfaces
2023;15:33784-96. DOI PubMed
103. Xie P, Mao J, Luo Y. Highly bright and stable electroluminescent devices with extraordinary stretchability and ultraconformability. J
Mater Chem C 2019;7:484-9. DOI
104. Zhou Y, Zhao C, Wang J, et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent
displays. ACS Mater Lett 2019;1:511-8. DOI
105. Tan YJ, Godaba H, Chen G, et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics.
Nat Mater 2020;19:182-8. DOI
106. Xuan HD, Timothy B, Park HY, et al. Super stretchable and durable electroluminescent devices based on double-network ionogels.
Adv Mater 2021;33:e2008849. DOI PubMed
107. Zhu H, Hu X, Liu B, Chen Z, Qu S. 3D printing of conductive hydrogel-elastomer hybrids for stretchable electronics. ACS Appl
Mater Interfaces 2021;13:59243-51. DOI PubMed

