Page 137 - Read Online
P. 137

Page 30 of 32                           Keum et al. Soft Sci 2024;4:34  https://dx.doi.org/10.20517/ss.2024.26

               76.       Kim Y, Kim J, Kim CY, et al. A modulus-engineered multi-layer polymer film with mechanical robustness for the application to
                    highly deformable substrate platform in stretchable electronics. Chem Eng J 2022;431:134074.  DOI
               77.       Lee W, Park J. Fatigue effect of stretchable a-InGaZnO TFT on PI/PDMS substrate under repetitive Uni/biaxial elongation stress.
                    ACS Appl Electron Mater 2022;4:6004-12.  DOI
               78.       Miyakawa M, Tsuji H, Nakata M. Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for
                    deformable display applications. J Soc Inf Disp 2022;30:699-705.  DOI
               79.       Oh H, Oh JY, Park CW, Pi JE, Yang JH, Hwang CS. High density integration of stretchable inorganic thin film transistors with
                    excellent performance and reliability. Nat Commun 2022;13:4963.  DOI  PubMed  PMC
               80.       Song X, Zhang T, Wu L, et al. Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer
                    substrates. Adv Sci 2022;9:e2105623.  DOI  PubMed  PMC
               81.       Kang SH, Jo JW, Lee JM, et al. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored
                    elastic substrates on a large scale. Nat Commun 2024;15:2814.  DOI  PubMed  PMC
               82.       Huang W, Jiao H, Huang Q, Zhang J, Zhang M. Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically
                    stretchable transistors. Nanoscale 2020;12:23546-55.  DOI
               83.       Fan L, Wang Q, Huang Q, et al. Stretchable carbon nanotube thin-film transistor arrays realized by a universal transferable-band-aid
                    method. IEEE Trans Electron Devices 2021;68:5879-85.  DOI
               84.       Nishio Y, Hirotani J, Kishimoto S, Kataura H, Ohno Y. Low-voltage operable and strain-insensitive stretchable all-carbon nanotube
                    integrated circuits with local strain suppression layer. Adv Elect Mater 2021;7:2000674.  DOI
               85.       Zhang W, Liu Y, Pei X, et al. Stretchable MoS  artificial photoreceptors for E-Skin. Adv Funct Mater 2022;32:2107524.  DOI
                                                  2
               86.       Koo JH, Kang J, Lee S, et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat Electron
                    2023;6:137-45.  DOI
               87.       Li Y, Li N, Liu W, et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat
                    Commun 2023;14:4488.  DOI  PubMed  PMC
               88.       Mai Y, Cotterell B. On the essential work of ductile fracture in polymers. Int J Fract 1986;32:105-25.  DOI
               89.       Xia Z, Hutchinson JW. Crack patterns in thin films. J Mech Phys Solids 2000;48:1107-31.  DOI
               90.       Alkhadra MA, Root SE, Hilby KM, Rodriquez D, Sugiyama F, Lipomi DJ. Quantifying the fracture behavior of brittle and ductile
                    thin films of semiconducting polymers. Chem Mater 2017;29:10139-49.  DOI
               91.       Kim SW, Park S, Lee S, et al. Stretchable mesh-patterned organic semiconducting thin films on creased elastomeric substrates. Adv
                    Funct Mater 2021;31:2010870.  DOI
               92.       Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater
                    2012;24:2945-86.  DOI  PubMed
               93.       Park B, Nam S, Kang Y, et al. Cation doping strategy for improved carrier mobility and stability in metal-oxide Heterojunction thin-
                    film transistors. Mater Today Electron 2024;8:100090.  DOI
               94.       Chae SH, Yu WJ, Bae JJ, et al. Transferred wrinkled Al O  for highly stretchable and transparent graphene-carbon nanotube
                                                            3
                                                           2
                    transistors. Nat Mater 2013;12:403-9.  DOI  PubMed
               95.       Cai L, Wang C. Carbon nanotube flexible and stretchable electronics. Nanoscale Res Lett 2015;10:1013.  DOI  PubMed  PMC
               96.       Dai Y, Hu H, Wang M, Xu J, Wang S. Stretchable transistors and functional circuits for human-integrated electronics. Nat Electron
                    2021;4:17-29.  DOI
               97.       Jeong MW, Ma JH, Shin JS, et al. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer
                    light-emitting diodes. Sci Adv 2023;9:eadh1504.  DOI  PubMed  PMC
               98.       Kim JH, Park JW. Intrinsically stretchable organic light-emitting diodes. Sci Adv 2021;7:eabd9715.  DOI  PubMed  PMC
               99.       Jeon K, Park J. Light-emitting polymer blended with elastomers for stretchable polymer light-emitting diodes. Macromolecules
                    2022;55:8311-20.  DOI
               100.      Li XC, Yao L, Song W, et al. Intrinsically stretchable electroluminescent elastomers with self-confinement effect for highly efficient
                    non-blended stretchable OLEDs. Angew Chem Int Ed Engl 2023;62:e202213749.  DOI  PubMed
               101.      Liu W, Zhang C, Alessandri R, et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed
                    fluorescence. Nat Mater 2023;22:737-45.  DOI
               102.      Oh JH, Park JW. Intrinsically stretchable phosphorescent light-emitting materials for stretchable displays. ACS Appl Mater Interfaces
                    2023;15:33784-96.  DOI  PubMed
               103.      Xie P, Mao J, Luo Y. Highly bright and stable electroluminescent devices with extraordinary stretchability and ultraconformability. J
                    Mater Chem C 2019;7:484-9.  DOI
               104.      Zhou Y, Zhao C, Wang J, et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent
                    displays. ACS Mater Lett 2019;1:511-8.  DOI
               105.      Tan YJ, Godaba H, Chen G, et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics.
                    Nat Mater 2020;19:182-8.  DOI
               106.      Xuan HD, Timothy B, Park HY, et al. Super stretchable and durable electroluminescent devices based on double-network ionogels.
                    Adv Mater 2021;33:e2008849.  DOI  PubMed
               107.      Zhu H, Hu X, Liu B, Chen Z, Qu S. 3D printing of conductive hydrogel-elastomer hybrids for stretchable electronics. ACS Appl
                    Mater Interfaces 2021;13:59243-51.  DOI  PubMed
   132   133   134   135   136   137   138   139   140   141   142