Page 136 - Read Online
P. 136

Keum et al. Soft Sci 2024;4:34  https://dx.doi.org/10.20517/ss.2024.26          Page 29 of 32

               45.       Kim DW, Kwon J, Kim HS, Jeong U. Printed stretchable single-nanofiber interconnections for individually-addressable highly-
                    integrated transparent stretchable field effect transistor array. Nano Lett 2021;21:5819-27.  DOI  PubMed
               46.       Zhang  C,  Khan  A,  Cai  J,  et  al.  Stretchable  transparent  electrodes  with  solution-processed  regular  metal  mesh  for  an
                    electroluminescent light-emitting film. ACS Appl Mater Interfaces 2018;10:21009-17.  DOI
               47.       Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.  DOI
                    PubMed  PMC
               48.       Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater 2015;27:1480-511.  DOI
                    PubMed
               49.       Vosgueritchian M, Lipomi DJ, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable
                    and flexible transparent electrodes. Adv Funct Mater 2012;22:421-8.  DOI
               50.       Kang S, Lee BY, Lee SH, Lee SD. High resolution micro-patterning of stretchable polymer electrodes through directed wetting
                    localization. Sci Rep 2019;9:13066.  DOI  PubMed  PMC
               51.       Gong X, Chu Z, Li G, et al. Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices.
                    Macromol Rapid Commun 2023;44:e2200795.  DOI  PubMed
               52.       Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible
                    conductive devices. Adv Funct Mater 2018;28:1804197.  DOI
               53.       Zhu M, Ji S, Luo Y, et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv
                    Mater 2022;34:e2101339.  DOI
               54.       Kwon C, Seong D, Ha J, et al. Self-bondable and stretchable conductive composite fibers with spatially controlled percolated ag
                    nanoparticle networks: novel integration strategy for wearable electronics. Adv Funct Mater 2020;30:2005447.  DOI
               55.       Lee Y, Kim BJ, Hu L, Hong J, Ahn JH. Morphable 3D structure for stretchable display. Mater Today 2022;53:51-7.  DOI
               56.       Kim N, Kim J, Seo J, Hong C, Lee J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS
                    Appl Mater Interfaces 2022;14:4344-51.  DOI
               57.       Lee D, Kim SB, Kim T, et al. Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation. Nat
                    Commun 2024;15:4349.  DOI  PubMed  PMC
               58.       Myny K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron 2018;1:30-9.  DOI
               59.       Wu F, Liu Y, Zhang J, Duan S, Ji D, Yang H. Recent advances in high-mobility and high-stretchability organic field-effect
                    transistors: from materials, devices to applications. Small Methods 2021;5:e2100676.  DOI  PubMed
               60.       Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature
                    2018;555:83-8.  DOI
               61.       Liu J, Wang J, Zhang Z, et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat Commun
                    2020;11:3362.  DOI  PubMed  PMC
               62.       Liu D, Mun J, Chen G, et al. A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating
                    conjugated rigid fused-rings with bulky side groups. J Am Chem Soc 2021;143:11679-89.  DOI
               63.       Matsuhisa N, Niu S, O’Neill SJK, et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021;600:246-52.  DOI
               64.       Mun J, Ochiai Y, Wang W, et al. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun
                    2021;12:3572.  DOI  PubMed  PMC
               65.       Ren H, Zhang J, Tong Y, et al. Selection of insulating elastomers for high-performance intrinsically stretchable transistors. ACS Appl
                    Electron Mater 2021;3:1458-67.  DOI
               66.       Zheng Y, Yu Z, Zhang S, et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat Commun
                    2021;12:5701.  DOI  PubMed  PMC
               67.       Liu D, Lei Y, Ji X, et al. Tuning the mechanical and electric properties of conjugated polymer semiconductors: side-chain design
                    based on asymmetric benzodithiophene building blocks. Adv Funct Mater 2022;32:2203527.  DOI
               68.       Pei D, An C, Zhao B, et al. Polyurethane-based stretchable semiconductor nanofilms with high intrinsic recovery similar to
                    conventional elastomers. ACS Appl Mater Interfaces 2022;14:33806-16.  DOI
               69.       Liu K, Wang C, Liu B, et al. Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological
                    signal detection. Adv Mater 2023;35:e2207006.  DOI  PubMed
               70.       Zheng Y, Michalek L, Liu Q, et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered
                    nanostructured molecular-level protection. Nat Nanotechnol 2023;18:1175-84.  DOI
               71.       Kim JS, Jeong MW, Nam TU, et al. Intrinsically stretchable subthreshold organic transistors for highly sensitive low-power skin-like
                    active-matrix temperature sensors. Adv Funct Mater 2024;34:2305252.  DOI
               72.       Park CW, Koo JB, Hwang C, Park H, Im SG, Lee S. Stretchable active matrix of oxide thin-film transistors with monolithic liquid
                    metal interconnects. Appl Phys Express 2018;11:126501.  DOI
               73.       Kim JO, Hur JS, Kim D, et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable
                    transistor applications. Adv Funct Mater 2020;30:1906647.  DOI
               74.       Han K, Lee W, Kim Y, Kim J, Choi B, Park J. Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable
                    electronic application. ACS Appl Electron Mater 2021;3:5037-47.  DOI
               75.       Li E, Rao Z, Wang X, et al. Direct fabrication of stretchable electronics on a programmable stiffness substrate with 100% strain
                    isolation. IEEE Electron Device Lett 2021;42:1484-7.  DOI
   131   132   133   134   135   136   137   138   139   140   141