Page 136 - Read Online
P. 136
Keum et al. Soft Sci 2024;4:34 https://dx.doi.org/10.20517/ss.2024.26 Page 29 of 32
45. Kim DW, Kwon J, Kim HS, Jeong U. Printed stretchable single-nanofiber interconnections for individually-addressable highly-
integrated transparent stretchable field effect transistor array. Nano Lett 2021;21:5819-27. DOI PubMed
46. Zhang C, Khan A, Cai J, et al. Stretchable transparent electrodes with solution-processed regular metal mesh for an
electroluminescent light-emitting film. ACS Appl Mater Interfaces 2018;10:21009-17. DOI
47. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076. DOI
PubMed PMC
48. Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater 2015;27:1480-511. DOI
PubMed
49. Vosgueritchian M, Lipomi DJ, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable
and flexible transparent electrodes. Adv Funct Mater 2012;22:421-8. DOI
50. Kang S, Lee BY, Lee SH, Lee SD. High resolution micro-patterning of stretchable polymer electrodes through directed wetting
localization. Sci Rep 2019;9:13066. DOI PubMed PMC
51. Gong X, Chu Z, Li G, et al. Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices.
Macromol Rapid Commun 2023;44:e2200795. DOI PubMed
52. Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible
conductive devices. Adv Funct Mater 2018;28:1804197. DOI
53. Zhu M, Ji S, Luo Y, et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv
Mater 2022;34:e2101339. DOI
54. Kwon C, Seong D, Ha J, et al. Self-bondable and stretchable conductive composite fibers with spatially controlled percolated ag
nanoparticle networks: novel integration strategy for wearable electronics. Adv Funct Mater 2020;30:2005447. DOI
55. Lee Y, Kim BJ, Hu L, Hong J, Ahn JH. Morphable 3D structure for stretchable display. Mater Today 2022;53:51-7. DOI
56. Kim N, Kim J, Seo J, Hong C, Lee J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS
Appl Mater Interfaces 2022;14:4344-51. DOI
57. Lee D, Kim SB, Kim T, et al. Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation. Nat
Commun 2024;15:4349. DOI PubMed PMC
58. Myny K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron 2018;1:30-9. DOI
59. Wu F, Liu Y, Zhang J, Duan S, Ji D, Yang H. Recent advances in high-mobility and high-stretchability organic field-effect
transistors: from materials, devices to applications. Small Methods 2021;5:e2100676. DOI PubMed
60. Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature
2018;555:83-8. DOI
61. Liu J, Wang J, Zhang Z, et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat Commun
2020;11:3362. DOI PubMed PMC
62. Liu D, Mun J, Chen G, et al. A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating
conjugated rigid fused-rings with bulky side groups. J Am Chem Soc 2021;143:11679-89. DOI
63. Matsuhisa N, Niu S, O’Neill SJK, et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021;600:246-52. DOI
64. Mun J, Ochiai Y, Wang W, et al. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun
2021;12:3572. DOI PubMed PMC
65. Ren H, Zhang J, Tong Y, et al. Selection of insulating elastomers for high-performance intrinsically stretchable transistors. ACS Appl
Electron Mater 2021;3:1458-67. DOI
66. Zheng Y, Yu Z, Zhang S, et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat Commun
2021;12:5701. DOI PubMed PMC
67. Liu D, Lei Y, Ji X, et al. Tuning the mechanical and electric properties of conjugated polymer semiconductors: side-chain design
based on asymmetric benzodithiophene building blocks. Adv Funct Mater 2022;32:2203527. DOI
68. Pei D, An C, Zhao B, et al. Polyurethane-based stretchable semiconductor nanofilms with high intrinsic recovery similar to
conventional elastomers. ACS Appl Mater Interfaces 2022;14:33806-16. DOI
69. Liu K, Wang C, Liu B, et al. Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological
signal detection. Adv Mater 2023;35:e2207006. DOI PubMed
70. Zheng Y, Michalek L, Liu Q, et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered
nanostructured molecular-level protection. Nat Nanotechnol 2023;18:1175-84. DOI
71. Kim JS, Jeong MW, Nam TU, et al. Intrinsically stretchable subthreshold organic transistors for highly sensitive low-power skin-like
active-matrix temperature sensors. Adv Funct Mater 2024;34:2305252. DOI
72. Park CW, Koo JB, Hwang C, Park H, Im SG, Lee S. Stretchable active matrix of oxide thin-film transistors with monolithic liquid
metal interconnects. Appl Phys Express 2018;11:126501. DOI
73. Kim JO, Hur JS, Kim D, et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable
transistor applications. Adv Funct Mater 2020;30:1906647. DOI
74. Han K, Lee W, Kim Y, Kim J, Choi B, Park J. Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable
electronic application. ACS Appl Electron Mater 2021;3:5037-47. DOI
75. Li E, Rao Z, Wang X, et al. Direct fabrication of stretchable electronics on a programmable stiffness substrate with 100% strain
isolation. IEEE Electron Device Lett 2021;42:1484-7. DOI

