Page 11 - Read Online
P. 11
Zou et al. Soft Sci 2024;4:19 https://dx.doi.org/10.20517/ss.2024.13 Page 9 of 10
31. Park Y, Cha E, An HS, et al. Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes. Nano Res
2020;13:1347-53. DOI
32. Park J, Kim J, Kim SY, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv
2018;4:eaap9841. DOI PubMed PMC
33. Takamatsu T, Chen Y, Yoshimasu T, Nishizawa M, Miyake T. Highly efficient, flexible wireless-powered circuit printed on a moist,
soft contact lens. Adv Mater Technol 2019;4:1800671. DOI
34. Lee GH, Moon H, Kim H, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater
2020;5:149-65. DOI PubMed PMC
35. Gong Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials 2021;11:842.
DOI PubMed PMC
36. Sun W, Ji L, Lin Z, et al. 20 µm micro-LEDs mass transfer via laser-induced in situ nanoparticles resonance enhancement. Small
2024:e2309877. DOI PubMed
37. Wang L, Yang S, Zhou F, et al. Wafer-scale transferrable GaN enabled by hexagonal boron nitride for flexible light-emitting diode.
Small 2024;20:e2306132. DOI PubMed
38. Shin J, Kim H, Sundaram S, et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 2023;614:81-7. DOI
39. Zhang S, Liu B, Ren F, et al. Graphene-nanorod enhanced quasi-Van Der Waals epitaxy for high indium composition nitride films.
Small 2021;17:e2100098. DOI PubMed
40. Yu J, Wang L, Hao Z, et al. Van der Waals epitaxy of III-nitride semiconductors based on 2D materials for flexible applications. Adv
Mater 2020;32:e1903407. DOI PubMed
41. Lee CH, Kim YJ, Hong YJ, et al. Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv Mater
2011;23:4614-9. DOI PubMed
42. Kim Y, Cruz SS, Lee K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature
2017;544:340-3. DOI
43. Cheng CW, Shiu KT, Li N, Han SJ, Shi L, Sadana DK. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible
electronics. Nat Commun 2013;4:1577. DOI PubMed
44. Schermer JJ, Mulder P, Bauhuis GJ, et al. Epitaxial Lift-Off for large area thin film III/V devices. Phys Status Solidi A 2005;202:501-
8. DOI
45. Lin C, Dai J, Wang G, Lin M. Chemical lift-off process for blue light-emitting diodes. Appl Phys Express 2010;3:092101. DOI
46. Lin M, Lin C, Huang W, et al. Chemical-mechanical lift-off process for InGaN epitaxial layers. Appl Phys Express 2011;4:062101.
DOI
47. Chen Q, Yang K, Shi B, et al. Principles for 2D-material-assisted nitrides epitaxial growth. Adv Mater 2023;35:e2211075. DOI
PubMed
48. Liang D, Wei T, Wang J, Li J. Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy
2020;69:104463. DOI
49. Chung K, In Park S, Baek H, Chung J, Yi G. High-quality GaN films grown on chemical vapor-deposited graphene films. NPG Asia
Mater 2012;4:e24. DOI
50. Choi JH, Cho EH, Lee YS, et al. Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer. Adv Opt Mater
2014;2:267-74. DOI
51. Huang S, Zhang Y, Leung B, et al. Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN
thin films. ACS Appl Mater Interfaces 2013;5:11074-9. DOI
52. Choi W, Kim CZ, Kim CS, et al. A repeatable epitaxial lift-off process from a single GaAs substrate for low-cost and high-efficiency
III-V solar cells. Adv Energy Mater 2014;4:1400589. DOI
53. Kirk AP, Cardwell DW, Wood JD, et al. Recent progress in epitaxial lift-off solar cells. In: 2018 IEEE 7th World Conference on
Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC); 2018 Jun 10-
15; Waikoloa, HI, USA. IEEE; 2018. pp. 32-5. DOI
54. Park SH, Kim TJ, Lee HE, et al. Universal selective transfer printing via micro-vacuum force. Nat Commun 2023;14:7744. DOI
PubMed PMC
55. Chang W, Kim J, Kim M, et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 2023;617:287-91.
DOI
56. Meitl MA, Zhu Z, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater 2006;5:33-8.
DOI
57. Carlson A, Bowen AM, Huang Y, Nuzzo RG, Rogers JA. Transfer printing techniques for materials assembly and micro/nanodevice
fabrication. Adv Mater 2012;24:5284-318. DOI PubMed
58. Gong Y, Gong Z. Laser-based micro/nano-processing techniques for microscale LEDs and full-color displays. Adv Mater Technol
2023;8:2200949. DOI
59. Lee D, Cho S, Park C, et al. Fluidic self-assembly for MicroLED displays by controlled viscosity. Nature 2023;619:755-60. DOI
60. Rao Z, Lu Y, Li Z, et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat Electron
2021;4:513-21. DOI
61. Jiao R, Wang R, Wang Y, et al. Vertical serpentine interconnect-enabled stretchable and curved electronics. Microsyst Nanoeng

