Page 11 - Read Online
P. 11

Zou et al. Soft Sci 2024;4:19  https://dx.doi.org/10.20517/ss.2024.13            Page 9 of 10

               31.      Park Y, Cha E, An HS, et al. Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes. Nano Res
                   2020;13:1347-53.  DOI
               32.      Park J, Kim J, Kim SY, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv
                   2018;4:eaap9841.  DOI  PubMed  PMC
               33.      Takamatsu T, Chen Y, Yoshimasu T, Nishizawa M, Miyake T. Highly efficient, flexible wireless-powered circuit printed on a moist,
                   soft contact lens. Adv Mater Technol 2019;4:1800671.  DOI
               34.      Lee GH, Moon H, Kim H, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater
                   2020;5:149-65.  DOI  PubMed  PMC
               35.      Gong Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials 2021;11:842.
                   DOI  PubMed  PMC
               36.      Sun W, Ji L, Lin Z, et al. 20 µm micro-LEDs mass transfer via laser-induced in situ nanoparticles resonance enhancement. Small
                   2024:e2309877.  DOI  PubMed
               37.      Wang L, Yang S, Zhou F, et al. Wafer-scale transferrable GaN enabled by hexagonal boron nitride for flexible light-emitting diode.
                   Small 2024;20:e2306132.  DOI  PubMed
               38.      Shin J, Kim H, Sundaram S, et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 2023;614:81-7.  DOI
               39.      Zhang S, Liu B, Ren F, et al. Graphene-nanorod enhanced quasi-Van Der Waals epitaxy for high indium composition nitride films.
                   Small 2021;17:e2100098.  DOI  PubMed
               40.      Yu J, Wang L, Hao Z, et al. Van der Waals epitaxy of III-nitride semiconductors based on 2D materials for flexible applications. Adv
                   Mater 2020;32:e1903407.  DOI  PubMed
               41.      Lee CH, Kim YJ, Hong YJ, et al. Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv Mater
                   2011;23:4614-9.  DOI  PubMed
               42.      Kim Y, Cruz SS, Lee K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature
                   2017;544:340-3.  DOI
               43.      Cheng CW, Shiu KT, Li N, Han SJ, Shi L, Sadana DK. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible
                   electronics. Nat Commun 2013;4:1577.  DOI  PubMed
               44.      Schermer JJ, Mulder P, Bauhuis GJ, et al. Epitaxial Lift-Off for large area thin film III/V devices. Phys Status Solidi A 2005;202:501-
                   8.  DOI
               45.      Lin C, Dai J, Wang G, Lin M. Chemical lift-off process for blue light-emitting diodes. Appl Phys Express 2010;3:092101.  DOI
               46.      Lin M, Lin C, Huang W, et al. Chemical-mechanical lift-off process for InGaN epitaxial layers. Appl Phys Express 2011;4:062101.
                   DOI
               47.      Chen Q, Yang K, Shi B, et al. Principles for 2D-material-assisted nitrides epitaxial growth. Adv Mater 2023;35:e2211075.  DOI
                   PubMed
               48.      Liang D, Wei T, Wang J, Li J. Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy
                   2020;69:104463.  DOI
               49.      Chung K, In Park S, Baek H, Chung J, Yi G. High-quality GaN films grown on chemical vapor-deposited graphene films. NPG Asia
                   Mater 2012;4:e24.  DOI
               50.      Choi JH, Cho EH, Lee YS, et al. Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer. Adv Opt Mater
                   2014;2:267-74.  DOI
               51.      Huang S, Zhang Y, Leung B, et al. Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN
                   thin films. ACS Appl Mater Interfaces 2013;5:11074-9.  DOI
               52.      Choi W, Kim CZ, Kim CS, et al. A repeatable epitaxial lift-off process from a single GaAs substrate for low-cost and high-efficiency
                   III-V solar cells. Adv Energy Mater 2014;4:1400589.  DOI
               53.      Kirk AP, Cardwell DW, Wood JD, et al. Recent progress in epitaxial lift-off solar cells. In: 2018 IEEE 7th World Conference on
                   Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC); 2018 Jun 10-
                   15; Waikoloa, HI, USA. IEEE; 2018. pp. 32-5.  DOI
               54.      Park SH, Kim TJ, Lee HE, et al. Universal selective transfer printing via micro-vacuum force. Nat Commun 2023;14:7744.  DOI
                   PubMed  PMC
               55.      Chang W, Kim J, Kim M, et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 2023;617:287-91.
                   DOI
               56.      Meitl MA, Zhu Z, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater 2006;5:33-8.
                   DOI
               57.      Carlson A, Bowen AM, Huang Y, Nuzzo RG, Rogers JA. Transfer printing techniques for materials assembly and micro/nanodevice
                   fabrication. Adv Mater 2012;24:5284-318.  DOI  PubMed
               58.      Gong Y, Gong Z. Laser-based micro/nano-processing techniques for microscale LEDs and full-color displays. Adv Mater Technol
                   2023;8:2200949.  DOI
               59.      Lee D, Cho S, Park C, et al. Fluidic self-assembly for MicroLED displays by controlled viscosity. Nature 2023;619:755-60.  DOI
               60.      Rao Z, Lu Y, Li Z, et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat Electron
                   2021;4:513-21.  DOI
               61.      Jiao R, Wang R, Wang Y, et al. Vertical serpentine interconnect-enabled stretchable and curved electronics. Microsyst Nanoeng
   6   7   8   9   10   11   12   13   14   15   16