Page 126 - Read Online
P. 126

Page 20 of 21                          Zhang et al. Soft Sci 2024;4:23  https://dx.doi.org/10.20517/ss.2023.58

               61.       Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007;32:876-921.  DOI
               62.       Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 2013;3:112117.  DOI
               63.       Wang Q, Yu Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater
                    2015;27:7109-16.  DOI  PubMed
               64.       Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 2012;7:e45485.  DOI
                    PubMed  PMC
               65.       Lee J, Kim CJ. Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst
                    2000;9:171-80.  DOI
               66.       Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci
                    Adv 2017;3:e1601649.  DOI  PubMed  PMC
               67.       Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev
                    Mater 2020;5:351-70.  DOI
               68.       Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion
                    mechanism. Sci Rep 2014;4:4588.  DOI  PubMed  PMC
               69.       Dudley HC, Levine MD. Studies of the toxic action of gallium. J Pharmacol Exp Ther 1949;95:487-93. Available from: https://jpet.
                    aspetjournals.org/content/95/4/487.full. [Last accessed on 4 Jun 2024]
               70.       Bonchi C, Imperi F, Minandri F, Visca P, Frangipani E. Repurposing of gallium-based drugs for antibacterial therapy. Biofactors
                    2014;40:303-12.  DOI  PubMed
               71.       Wang Q, Yu Y, Pan K, Liu J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing
                    in-vitro organ anatomy. IEEE Trans Biomed Eng 2014;61:2161-6.  DOI  PubMed
               72.       Liu H, Yu Y, Wang W, et al. Novel contrast media based on the liquid metal gallium for in vivo digestive tract radiography: a
                    feasibility study. Biometals 2019;32:795-801.  DOI  PubMed
               73.       Guo R, Liu J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion
                    functions. J Micromech Microeng 2017;27:104002.  DOI
               74.       Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater 2023;12:2201924.
                    DOI
               75.       Khondoker MAH, Sameoto D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart
                    Mater Struct 2016;25:093001.  DOI
               76.       Jackson N, Buckley J, Clarke C, Stam F. Manufacturing methods of stretchable liquid metal-based antenna. Microsyst Technol
                    2019;25:3175-84.  DOI
               77.       Dong  R,  Wang  L,  Hang  C,  et  al.  Printed  stretchable  liquid  metal  electrode  arrays  for  in  vivo  neural  recording.  Small
                    2021;17:e2006612.  DOI  PubMed
               78.       Niu Y, Tian G, Liang C, et al. Thermal-sinterable EGaIn nanoparticle inks for highly deformable bioelectrode arrays. Adv Healthc
                    Mater 2023;12:e2202531.  DOI  PubMed
               79.       Dong R, Liu X, Cheng S, et al. Highly stretchable metal-polymer conductor electrode array for electrophysiology. Adv Healthc Mater
                    2021;10:e2000641.  DOI  PubMed
               80.       Wen X, Wang B, Huang S, et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for
                    deep-brain chemical sensing and agent delivery. Biosens Bioelectron 2019;131:37-45.  DOI  PubMed  PMC
               81.       Lim T, Kim M, Akbarian A, Kim J, Tresco PA, Zhang H. Conductive polymer enabled biostable liquid metal electrodes for
                    bioelectronic applications. Adv Healthc Mater 2022;11:e2102382.  DOI  PubMed
               82.       Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.  DOI  PubMed
               83.       Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379-85.  DOI  PubMed
               84.       Matsuhisa N, Chen X, Bao Z, Someya T. Materials and structural designs of stretchable conductors. Chem Soc Rev 2019;48:2946-66.
                    DOI  PubMed
               85.       Sim K, Rao Z, Ershad F, Yu C. Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv Mater
                    2020;32:e1902417.  DOI  PubMed
               86.       Jiang C, Guo R. Liquid metal-based paper electronics: materials, methods, and applications. Sci China Technol Sci 2023;66:1595-
                    616.  DOI
               87.       Zhuang Q, Yao K, Wu M, et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable
                    bioelectronics with chronic biocompatibility. Sci Adv 2023;9:eadg8602.  DOI  PubMed  PMC
               88.       Park Y, Jung J, Lee Y, Lee D, Vlassak JJ, Park Y. Liquid-metal micro-networks with strain-induced conductivity for soft electronics
                    and robotic skin. npj Flex Electron 2022;6:81.  DOI
               89.       Hallfors N, Khan A, Dickey MD, Taylor AM. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-
                    friendly microfluidic platform. Lab Chip 2013;13:522-6.  DOI  PubMed  PMC
               90.       Jin C, Zhang J, Li X, Yang X, Li J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep
                    2013;3:3442.  DOI  PubMed  PMC
               91.       Xing S, Liu Y. Functional micro-/nanostructured gallium-based liquid metal for biochemical sensing and imaging applications.
                    Biosens Bioelectron 2024;243:115795.  DOI  PubMed
               92.       Zhang M, Li G, Huang L, et al. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl Mater Today
   121   122   123   124   125   126   127   128   129   130   131