Page 126 - Read Online
P. 126
Page 20 of 21 Zhang et al. Soft Sci 2024;4:23 https://dx.doi.org/10.20517/ss.2023.58
61. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007;32:876-921. DOI
62. Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 2013;3:112117. DOI
63. Wang Q, Yu Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater
2015;27:7109-16. DOI PubMed
64. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 2012;7:e45485. DOI
PubMed PMC
65. Lee J, Kim CJ. Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst
2000;9:171-80. DOI
66. Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci
Adv 2017;3:e1601649. DOI PubMed PMC
67. Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev
Mater 2020;5:351-70. DOI
68. Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion
mechanism. Sci Rep 2014;4:4588. DOI PubMed PMC
69. Dudley HC, Levine MD. Studies of the toxic action of gallium. J Pharmacol Exp Ther 1949;95:487-93. Available from: https://jpet.
aspetjournals.org/content/95/4/487.full. [Last accessed on 4 Jun 2024]
70. Bonchi C, Imperi F, Minandri F, Visca P, Frangipani E. Repurposing of gallium-based drugs for antibacterial therapy. Biofactors
2014;40:303-12. DOI PubMed
71. Wang Q, Yu Y, Pan K, Liu J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing
in-vitro organ anatomy. IEEE Trans Biomed Eng 2014;61:2161-6. DOI PubMed
72. Liu H, Yu Y, Wang W, et al. Novel contrast media based on the liquid metal gallium for in vivo digestive tract radiography: a
feasibility study. Biometals 2019;32:795-801. DOI PubMed
73. Guo R, Liu J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion
functions. J Micromech Microeng 2017;27:104002. DOI
74. Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater 2023;12:2201924.
DOI
75. Khondoker MAH, Sameoto D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart
Mater Struct 2016;25:093001. DOI
76. Jackson N, Buckley J, Clarke C, Stam F. Manufacturing methods of stretchable liquid metal-based antenna. Microsyst Technol
2019;25:3175-84. DOI
77. Dong R, Wang L, Hang C, et al. Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small
2021;17:e2006612. DOI PubMed
78. Niu Y, Tian G, Liang C, et al. Thermal-sinterable EGaIn nanoparticle inks for highly deformable bioelectrode arrays. Adv Healthc
Mater 2023;12:e2202531. DOI PubMed
79. Dong R, Liu X, Cheng S, et al. Highly stretchable metal-polymer conductor electrode array for electrophysiology. Adv Healthc Mater
2021;10:e2000641. DOI PubMed
80. Wen X, Wang B, Huang S, et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for
deep-brain chemical sensing and agent delivery. Biosens Bioelectron 2019;131:37-45. DOI PubMed PMC
81. Lim T, Kim M, Akbarian A, Kim J, Tresco PA, Zhang H. Conductive polymer enabled biostable liquid metal electrodes for
bioelectronic applications. Adv Healthc Mater 2022;11:e2102382. DOI PubMed
82. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7. DOI PubMed
83. Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379-85. DOI PubMed
84. Matsuhisa N, Chen X, Bao Z, Someya T. Materials and structural designs of stretchable conductors. Chem Soc Rev 2019;48:2946-66.
DOI PubMed
85. Sim K, Rao Z, Ershad F, Yu C. Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv Mater
2020;32:e1902417. DOI PubMed
86. Jiang C, Guo R. Liquid metal-based paper electronics: materials, methods, and applications. Sci China Technol Sci 2023;66:1595-
616. DOI
87. Zhuang Q, Yao K, Wu M, et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable
bioelectronics with chronic biocompatibility. Sci Adv 2023;9:eadg8602. DOI PubMed PMC
88. Park Y, Jung J, Lee Y, Lee D, Vlassak JJ, Park Y. Liquid-metal micro-networks with strain-induced conductivity for soft electronics
and robotic skin. npj Flex Electron 2022;6:81. DOI
89. Hallfors N, Khan A, Dickey MD, Taylor AM. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-
friendly microfluidic platform. Lab Chip 2013;13:522-6. DOI PubMed PMC
90. Jin C, Zhang J, Li X, Yang X, Li J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci Rep
2013;3:3442. DOI PubMed PMC
91. Xing S, Liu Y. Functional micro-/nanostructured gallium-based liquid metal for biochemical sensing and imaging applications.
Biosens Bioelectron 2024;243:115795. DOI PubMed
92. Zhang M, Li G, Huang L, et al. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl Mater Today

