Page 124 - Read Online
P. 124

Page 18 of 21                          Zhang et al. Soft Sci 2024;4:23  https://dx.doi.org/10.20517/ss.2023.58

               Copyright
               © The Author(s) 2024.


               REFERENCES
               1.       Yang F, Lu C, Rao W. Liquid metals enabled advanced cryobiology: development and perspectives. Soft Sci 2024;4:9.  DOI
               2.       Guo Z, Gao X, Lu J, et al. Recent advances for liquid metals: synthesis, modification and bio-applications. J Mater Sci Technol
                    2023;143:153-68.  DOI
               3.       Wang  L,  Lai  R,  Zhang  L,  Zeng  M,  Fu  L.  Emerging  liquid  metal  biomaterials:  from  design  to  application.  Adv  Mater
                    2022;34:e2201956.  DOI  PubMed
               4.       Gao W, Wang Y, Wang Q, Ma G, Liu J. Liquid metal biomaterials for biomedical imaging. J Mater Chem B 2022;10:829-42.  DOI
                    PubMed
               5.       Yi L, Liu J. Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 2017;62:415-
                    40.  DOI
               6.       Gao S, Cui Z, Wang X, Sun X. Liquid metal E-tattoo. Sci China Technol Sci 2023;66:1551-75.  DOI
               7.       Tang R, Zhang C, Liu B, et al. Towards an artificial peripheral nerve: liquid metal-based fluidic cuff electrodes for long-term nerve
                    stimulation and recording. Biosens Bioelectron 2022;216:114600.  DOI  PubMed
               8.       Liu F, Yu Y, Yi L, Liu J. Liquid metal as reconnection agent for peripheral nerve injury. Sci Bull 2016;61:939-47.  DOI
               9.       Zhang X, Liu B, Gao J, et al. Liquid metal-based electrode array for neural signal recording. Bioengineering 2023;10:578.  DOI
                    PubMed  PMC
               10.       Zhang J, Sheng L, Jin C, Liu J. Liquid metal as connecting or functional recovery channel for the transected sciatic nerve. arXiv.
                    [Preprint.] Apr 7, 2024 [accessed on 2024 Jun 4]. Available from: https://arxiv.org/abs/1404.5931.
               11.       Pereira D, Ferreira S, Ramírez-Rodríguez GB, Alves N, Sousa Â, Valente JFA. Silver and antimicrobial polymer nanocomplexes to
                    enhance biocidal effects. Int J Mol Sci 2024;25:1256.  DOI  PubMed  PMC
               12.       Shao Y, Luan Y, Hao C, Song J, Li L, Song F. Antimicrobial protection of two controlled release silver nanoparticles on simulated
                    silk cultural relic. J Colloid Interface Sci 2023;652:901-11.  DOI  PubMed
               13.       Mariadhas J, Jeeva Panchu S, Swart HC, et al. Microwave assisted green synthesis of Ag doped CuO NPs anchored on GO-sheets for
                    high performance photocatalytic and antimicrobial applications. J Ind Eng Chem 2023;128:383-95.  DOI
               14.       Alasvand N, Behnamghader A, Milan PB, Simorgh S, Mobasheri A, Mozafari M. Tissue-engineered small-diameter vascular grafts
                    containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration. Mater Today
                    Bio 2023;20:100647.  DOI  PubMed  PMC
               15.       Bozorgi A, Khazaei M, Bozorgi M, Sabouri L, Soleimani M, Jamalpoor Z. Bifunctional tissue-engineered composite construct for
                    bone regeneration: the role of copper and fibrin. J Biomed Mater Res B Appl Biomater 2024;112:e35362.  DOI  PubMed
               16.       Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording
                    from cells and cell-free membrane patches. Pflugers Arch 1981;391:85-100.  DOI  PubMed
               17.       Mohanty A, Li Q, Tadayon MA, et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical
                    stimulation. Nat Biomed Eng 2020;4:223-31.  DOI  PubMed
               18.       Jackson N, Sridharan A, Anand S, Baker M, Okandan M, Muthuswamy J. Long-term neural recordings using MEMS based movable
                    microelectrodes in the brain. Front Neuroeng 2010;3:10.  DOI  PubMed  PMC
               19.       Won C, Jeong U, Lee S, et al. Mechanically tissue-like and highly conductive Au nanoparticles embedded elastomeric fiber
                    electrodes of brain–machine interfaces for chronic in vivo brain neural recording. Adv Funct Mater 2022;32:2205145.  DOI
               20.       Santhan A, Hwa K. Construction of 2D niobium carbide-embedded silver/silver phosphate as sensitive disposable electrode material
                    for epinephrine detection in biological real samples. Mater Today Chem 2023;27:101332.  DOI
               21.       Obaid A, Hanna ME, Wu YW, et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci Adv
                    2020;6:eaay2789.  DOI  PubMed  PMC
               22.       Sharma R, Tathireddy P, Lee S, et al. Application-specific customizable architectures of Utah neural interfaces. Procedia Eng
                    2011;25:1016-9.  DOI
               23.       Barz F, Livi A, Lanzilotto M, et al. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to
                    fabrication, assembly, and functional validation in non-human primates. J Neural Eng 2017;14:036010.  DOI  PubMed
               24.       Szymanski LJ, Kellis S, Liu CY, et al. Neuropathological effects of chronically implanted, intracortical microelectrodes in a
                    tetraplegic patient. J Neural Eng 2021;18:0460b9.  DOI  PubMed
               25.       Tee BCK, Ouyang J. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv
                    Mater 2018;30:e1802560.  DOI  PubMed
               26.       Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B
                    2016;4:5349-57.  DOI  PubMed
               27.       Wang X, Fan L, Zhang J, et al. Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for
                    wireless multisite tumor therapy. Adv Funct Mater 2019;29:1907063.  DOI
               28.       Guo R, Wang X, Yu W, Tang J, Liu J. A highly conductive and stretchable wearable liquid metal electronic skin for long-term
                    conformable health monitoring. Sci China Technol Sci 2018;61:1031-7.  DOI
   119   120   121   122   123   124   125   126   127   128   129