Page 124 - Read Online
P. 124
Page 18 of 21 Zhang et al. Soft Sci 2024;4:23 https://dx.doi.org/10.20517/ss.2023.58
Copyright
© The Author(s) 2024.
REFERENCES
1. Yang F, Lu C, Rao W. Liquid metals enabled advanced cryobiology: development and perspectives. Soft Sci 2024;4:9. DOI
2. Guo Z, Gao X, Lu J, et al. Recent advances for liquid metals: synthesis, modification and bio-applications. J Mater Sci Technol
2023;143:153-68. DOI
3. Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging liquid metal biomaterials: from design to application. Adv Mater
2022;34:e2201956. DOI PubMed
4. Gao W, Wang Y, Wang Q, Ma G, Liu J. Liquid metal biomaterials for biomedical imaging. J Mater Chem B 2022;10:829-42. DOI
PubMed
5. Yi L, Liu J. Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 2017;62:415-
40. DOI
6. Gao S, Cui Z, Wang X, Sun X. Liquid metal E-tattoo. Sci China Technol Sci 2023;66:1551-75. DOI
7. Tang R, Zhang C, Liu B, et al. Towards an artificial peripheral nerve: liquid metal-based fluidic cuff electrodes for long-term nerve
stimulation and recording. Biosens Bioelectron 2022;216:114600. DOI PubMed
8. Liu F, Yu Y, Yi L, Liu J. Liquid metal as reconnection agent for peripheral nerve injury. Sci Bull 2016;61:939-47. DOI
9. Zhang X, Liu B, Gao J, et al. Liquid metal-based electrode array for neural signal recording. Bioengineering 2023;10:578. DOI
PubMed PMC
10. Zhang J, Sheng L, Jin C, Liu J. Liquid metal as connecting or functional recovery channel for the transected sciatic nerve. arXiv.
[Preprint.] Apr 7, 2024 [accessed on 2024 Jun 4]. Available from: https://arxiv.org/abs/1404.5931.
11. Pereira D, Ferreira S, Ramírez-Rodríguez GB, Alves N, Sousa Â, Valente JFA. Silver and antimicrobial polymer nanocomplexes to
enhance biocidal effects. Int J Mol Sci 2024;25:1256. DOI PubMed PMC
12. Shao Y, Luan Y, Hao C, Song J, Li L, Song F. Antimicrobial protection of two controlled release silver nanoparticles on simulated
silk cultural relic. J Colloid Interface Sci 2023;652:901-11. DOI PubMed
13. Mariadhas J, Jeeva Panchu S, Swart HC, et al. Microwave assisted green synthesis of Ag doped CuO NPs anchored on GO-sheets for
high performance photocatalytic and antimicrobial applications. J Ind Eng Chem 2023;128:383-95. DOI
14. Alasvand N, Behnamghader A, Milan PB, Simorgh S, Mobasheri A, Mozafari M. Tissue-engineered small-diameter vascular grafts
containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration. Mater Today
Bio 2023;20:100647. DOI PubMed PMC
15. Bozorgi A, Khazaei M, Bozorgi M, Sabouri L, Soleimani M, Jamalpoor Z. Bifunctional tissue-engineered composite construct for
bone regeneration: the role of copper and fibrin. J Biomed Mater Res B Appl Biomater 2024;112:e35362. DOI PubMed
16. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording
from cells and cell-free membrane patches. Pflugers Arch 1981;391:85-100. DOI PubMed
17. Mohanty A, Li Q, Tadayon MA, et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical
stimulation. Nat Biomed Eng 2020;4:223-31. DOI PubMed
18. Jackson N, Sridharan A, Anand S, Baker M, Okandan M, Muthuswamy J. Long-term neural recordings using MEMS based movable
microelectrodes in the brain. Front Neuroeng 2010;3:10. DOI PubMed PMC
19. Won C, Jeong U, Lee S, et al. Mechanically tissue-like and highly conductive Au nanoparticles embedded elastomeric fiber
electrodes of brain–machine interfaces for chronic in vivo brain neural recording. Adv Funct Mater 2022;32:2205145. DOI
20. Santhan A, Hwa K. Construction of 2D niobium carbide-embedded silver/silver phosphate as sensitive disposable electrode material
for epinephrine detection in biological real samples. Mater Today Chem 2023;27:101332. DOI
21. Obaid A, Hanna ME, Wu YW, et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci Adv
2020;6:eaay2789. DOI PubMed PMC
22. Sharma R, Tathireddy P, Lee S, et al. Application-specific customizable architectures of Utah neural interfaces. Procedia Eng
2011;25:1016-9. DOI
23. Barz F, Livi A, Lanzilotto M, et al. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to
fabrication, assembly, and functional validation in non-human primates. J Neural Eng 2017;14:036010. DOI PubMed
24. Szymanski LJ, Kellis S, Liu CY, et al. Neuropathological effects of chronically implanted, intracortical microelectrodes in a
tetraplegic patient. J Neural Eng 2021;18:0460b9. DOI PubMed
25. Tee BCK, Ouyang J. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv
Mater 2018;30:e1802560. DOI PubMed
26. Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B
2016;4:5349-57. DOI PubMed
27. Wang X, Fan L, Zhang J, et al. Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for
wireless multisite tumor therapy. Adv Funct Mater 2019;29:1907063. DOI
28. Guo R, Wang X, Yu W, Tang J, Liu J. A highly conductive and stretchable wearable liquid metal electronic skin for long-term
conformable health monitoring. Sci China Technol Sci 2018;61:1031-7. DOI

